Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c1:Ta có: v50>v49=7 ; v26>v25=5
nên v50+v26+1>7+5+1=13
v169>v168 hay 13>v168
Do đó, v50+v26+1>v168
c2:chắc thiếu đề r bn à
c1:
ta có: √50>√49=7;√26>25=5
➜√50+√26+1>7+5+1=13=√169>√168
Vậy √50+√26+1>√168
a) Ta có:
\(\dfrac{2929-101}{2.2929-404}=\dfrac{29.101-101}{2.29.101-4.101}=\dfrac{101.\left(29-1\right)}{101.\left(2.29-4\right)}=\dfrac{101.28}{101.54}=\dfrac{28}{54}=\dfrac{14}{27}\)
b) Ta có:
\(\dfrac{2.3+4.6+14.21}{3.5+6.10+21.35}=\dfrac{2.3+2.3.2^2+2.3.7^2}{3.5+3.5.2^2+3.5.7^2}=\dfrac{2.3.\left(1+2^2+7^2\right)}{3.5.\left(1+2^2+7^2\right)}=\dfrac{2.3}{3.5}=\dfrac{2}{5}\)
A=-1/2*-2/3*-3/4*..*-2013/2014
A=-1*-2*-3*...*-2013/2*3*4*...*2014
A=-1/2014
ta có(-1)^2015=-1
B=-1/2015>-1/2014=A
nên A<B
\(PT:ax^2+bx+c=0\) (1) có 2 nghiệm pb có dúng 1 nghiệm dương(x1) => ac<0 ; \(\sqrt{\Delta}=b^2-4ac>0\)
\(PT:ct^2+bt+a=0\) (2) có ac<0 => \(\sqrt{\Delta}=b^2-4ac>0\) (theo trên) => (2) cũng có 2 nghiệm pb ,trái dấu ( 1 dương = t1 )
ta có : x1>0 ; t1 >0 nên :
+ \(x_1.t_1=\frac{-b+\sqrt{\Delta}}{2a}.\frac{-b-\sqrt{\Delta}}{2c}=\frac{4ac}{4ac}=1\left(Neusa>0;c<0\right)\)
+ \(x_1.t_1=\frac{-b-\sqrt{\Delta}}{2a}.\frac{-b+\sqrt{\Delta}}{2c}=\frac{4ac}{4ac}=1\left(Neusa<0;c>0\right)\)
=> \(x_1+t_1\ge2\sqrt{x_1.t_1}=2\)
a)Q(x) = 6x^3 - x^2 +1 -2x^3 +3x^4 -4x^3 -2x^4 +4x^2
\(=\left(3x^4-2x^4\right)+\left(6x^3-2x^3-4x^3\right)+\left(4x^2-x^2\right)+1\)
\(Q\left(x\right)=x^4+3x^2+1\)
b) \(Q\left(3\right)=3^4+3.3^2+1=81+27+1=109\)
\(Q\left(-3\right)=\left(-3\right)^4+3.\left(-3\right)^2+1=81+27+1=109\)
Chọn mình nha
đáy bé dài:
129 . 3/4 = 104,25 (m)
Chiều cao dài:
104,25 : 5/8 = 166,8 (m)
Diện tích mảnh đất đó là:
(129 + 104,25). 166,8 : 2 = 19453,05 (m2)
= 194,4305 ha
Câu 1:
\(AB=\sqrt{\left[3-\left(-2\right)\right]^2+\left(3-2\right)^2}=\sqrt{26}\)
\(BC=\sqrt{\left(2-3\right)^2+\left(-2-3\right)^2}=\sqrt{26}\)
\(AC=\sqrt{\left[2-\left(-2\right)\right]^2+\left(-2-2\right)^2}=4\sqrt{2}\)
\(P=\dfrac{AB+BC+AC}{2}=\dfrac{2\sqrt{26}+4\sqrt{2}}{2}=\sqrt{26}+2\sqrt{2}\)
\(S=\sqrt{\left(\sqrt{26}+2\sqrt{2}\right)\cdot2\sqrt{2}\cdot2\sqrt{2}\cdot\left(\sqrt{26}-2\sqrt{2}\right)}=\sqrt{18\cdot8}=12\left(đvdt\right)\)