Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(I_{bh} = n|e|\)
\(n\) là số electron quang điện thoát khỏi catôt trong mỗi giây.
=> \(n=\frac{I_{bh} }{|e|} =\frac{2.10^{-3}} {1,6.10^{-19}}= 1,25.10^{16}\)
Nhận xét
1 giây có 1,25.1016 electron thoát ra.
=> 1 phút = 60 giây có \(\frac{1,25.10^{16}.60}{1}=7,5.10^{17}\)electron thoát ra.
Dòng quang điện bão hòa
\(I_{bh}= ne\)
\(n\) là số electron từ catôt đến anôt trong 1 s.
=> \(I_{bh}= 10^{15}.1,6.10^{-19}= 1,6.10^{-4}= 0,16 mA.\)
Số electron đến anôt trong 1 s là \(n = \frac{I_{bh}}{|e|}= \frac{2.10^{-3}}{1,6.10^{-19}} = 1,25.10^{16}\)
Số phôtôn đến catôt trong 1 s là \(N = \frac{P}{\varepsilon}= \frac{P\lambda}{hc}= \frac{1,515.546.10^{-9}}{6,625.10^{-34}.3.10^{8}}= 4,16.10^{18}\)
Hiệu suất lượng tử \(H = \frac{n}{N}.100 = \frac{1,25.10^{16}}{4,16.10^{18}}.100 = 30,03.10^{-2} \%.\)
Số electron đến anôt trong 1 s là \(n = \frac{I_{bh}}{|e|}= \frac{3.10^{-6}}{1,6.10^{-19}}=1,875.10^{13}. \)
Hiệu suất lượng tử \(H = \frac{n}{N}.100\)=> Số hạt phôtôn bay đến catôt là
\(N = \frac{n.100}{50}= \frac{1,875.10^{13}.100}{50}= 3,75.10^{13}.\)
Công suất của chùm sáng là
\(P = N.\varepsilon = N\frac{hc}{\lambda}=3,75.10^{13}.\frac{6,625.10^{-34}.3.10^8}{0,36.10^{-6}}= 2,07.10^{-5}W= 20,7.10^{-6}W.\)
Hiệu suất lượng tử \(H = \frac{n}{N}.100 \%.(1)\)
n là số electron đến anôt trong 1 s.
N là số phôtôn đập vào catôt trong 1s.
Trong 10 s có 3.1016 electron đến anôt => trong 1s có \(\frac{3.10^{16}}{10}= 3.10^{15}\) electron đến anôt.
Từ (1) => Trong 1 s số phôtôn đến catôt là \(N = \frac{n.100}{40}= \frac{3.10^{15}.100}{45}= 7,5.10^{15}\)
=> Trong 1 phút = 60 giây thì số phôtôn đến catôt là \(\frac{7,5.10^{15}.60}{1}= 4,5.10^{17}.\)
Khi chiếu đồng thời hai bức xạ vào kim loại thì động năng ban đầu cực đại của electron quang điện thoát ra khỏi bề mặt kim loại sẽ có giá trị lớn khi mà bức xạ có bước sóng nhỏ hơn => chọn λ = 0,243 μm.
\(W_{0đ max}= hf - A = hc.(\frac{1}{\lambda}-\frac{1}{\lambda_0})= 6,625.10^{-19}.3.10^8.(\frac{1}{0,243.10^{-6}}-\frac{1}{0,5.10^{-6}})= 4,2.10^{-19}J.\)
=> \(v_{0max}=\sqrt{ \frac{2.W_{0đ max}}{m_e}}= 9,61.10^5 m/s.\)
Để tính được động năng cực đại của quang electron khi đập vào anôt thì ta cần tính động năng ban đầu cực đại của electron khi thoát khỏi bề mặt kim loại.
Động năng lớn nhất của các electron thoát khỏi bề mặt kim loại là
\(\frac{hc}{\lambda}= A+W_{0max}^d\)
=> \(W_{0max}^d =\frac{hc}{\lambda}- A=6,625.10^{-34}.3.10^{-8}.(\frac{1}{330.10^{-9}}-\frac{1}{660.10^{-9}} )= 3,01.10^{-19}J. \)
Động năng cực đại của các quang electron khi đập vào anôt là
\(W_{max}^d=\frac{1}{2}v_{max}^2=W_{0max}^d+eU_{AK} = 3,01.10^{-19}+1,6.10^{-19}.1,5= 5,41.10^{-19}J.\)
Số electron đến anôt trong 1 s là \(n = \frac{I_{bh}}{|e|}= \frac{2.10^{-6}}{1,6.10^{-19}}=1,25.10^{13}\)
Hiệu suất lượng tử \(H = \frac{n}{N}.100 \% => N = \frac{1,25.10^{13}.100}{0,5}=2,5.10^{15} \)