K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2021

không phải bài này ạ

NV
29 tháng 1 2021

Do \(A\in\left(Oxz\right)\Rightarrow A\left(x;0;z\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{CA}=\left(x+1;-1;z+1\right)\\\overrightarrow{CB}=\left(-1;2;2\right)\end{matrix}\right.\)

Theo đề bài: \(\left\{{}\begin{matrix}\overrightarrow{CA}.\overrightarrow{CB}=0\\CA=CB\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\left(x+1\right)-2+2\left(z+1\right)=0\\\left(x+1\right)^2+1+\left(z+1\right)^2=1+4+4\end{matrix}\right.\)

Hi vọng là bạn tự giải được hệ pt rất cơ bản này

8 tháng 12 2018

Đáp án D

Vì ABCD là hình thang  

=>Phương trình đường thẳng AD là  

Ta có

Mà diện tích tam giác ABC là  

Mặt khác

Vì ABCD là hình thang  => D(-12;-1;3)

7 tháng 9 2019

27 tháng 4 2017

Hỏi đáp Toán

6 tháng 5 2017

22 tháng 3 2019

Chọn A.

Đường thẳng d đi qua G(2;-1;0) và có vectơ chỉ phương là 

Vậy phương trình tham số của d là 

DD
11 tháng 1 2023

a) \(Ox:\left\{{}\begin{matrix}x=t\\y=0\\z=0\end{matrix}\right.\).

Lấy điểm \(M\left(1;0;0\right)\in Ox\).

\(d\left(A,Ox\right)=\dfrac{\left|\left[\overrightarrow{MA},\overrightarrow{u_{Ox}}\right]\right|}{\left|\overrightarrow{u_{Ox}}\right|}=\sqrt{10}\).

\(d\left(B,Ox\right)=\dfrac{\left|\left[\overrightarrow{MA},\overrightarrow{u_{Ox}}\right]\right|}{\left|\overrightarrow{u_{Ox}}\right|}=\sqrt{10}\)

Do đó hai điểm \(A,B\) cách đều trục \(Ox\).

b) Điểm \(C\in Oz\) nên tọa độ điểm \(C\) có dạng \(\left(0;0;c\right)\).

Tam giác \(ABC\) vuông tại \(C\) nên \(CA\perp CB\)

suy ra \(\overrightarrow{CA}.\overrightarrow{CB}=0\)

\(\Leftrightarrow1.\left(-2\right)-3.1-\left(1+c\right).\left(3-c\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}c=-2\\c=4\end{matrix}\right.\).

c) Mặt phẳng \(\left(Oyz\right)\)\(x=0\)

Hình chiếu của \(A,B\) trên \(\left(Oyz\right)\) lần lượt là \(A'\left(0;-3;-1\right)\)\(B'\left(0;1;3\right)\)

Phương trình hình chiếu của đường thẳng \(AB\) trên \(\left(Oyz\right)\) là phương trình của đường thẳng \(A'B'\).

d) Gọi tọa độ tâm thỏa mãn yêu cầu bài toán là \(I\left(0;a;b\right)\).

Có \(IO=IA=IB\) suy ra 

\(a^2+b^2=1^2+\left(a+3\right)^2+\left(b+1\right)^2=2^2+\left(a-1\right)^2+\left(b-3\right)^2\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{-47}{16}\\b=\dfrac{53}{16}\end{matrix}\right.\).

21 tháng 9 2019

Đáp án D

13 tháng 5 2017

26 tháng 5 2017

Ta có : \(\overrightarrow{AB}=\left(-a;b;0\right)\)

\(\overrightarrow{AC}=\left(-a;0;c\right)\)

\(\overrightarrow{AB}.\overrightarrow{AC}=a^2>0\) nên góc \(\widehat{BAC}\) là góc nhọn

Lập luận tương tự chứng minh được các góc \(\widehat{B}\)\(\widehat{C}\) cũng là góc nhọn