Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lambda=\frac{v}{f}=\frac{10}{5}=2cm.\)
- Điểm P thuộc MI có:
\(u_P=2a\cos2\pi(ft-\frac{d_1}{\lambda})\)
\(u_I=2a\cos2\pi(ft-\frac{d_1}{\lambda})\)
=> độ lệch pha giữa P và I là: \(\triangle \phi = 2\pi \frac{d_1-d_1^{'}}{\lambda}\)
- Điểm P đồng pha với điểm I khi
\(\triangle\phi=2\pi\frac{d_1-d_1^{'}}{\lambda}=2k\pi.\)
\(\Rightarrow d_1-d_1^{'}=k\lambda\)
\( mà \ \ O_1I-O_1I< d_1-d_1^{'}< O_1M-O_1I (1)\\ \Rightarrow 0< k<\frac{10\sqrt2-10}{2}=2.07\\ \Rightarrow k = 1;2. \)
=> có 2 điểm trên khoảng MI đồng pha với điểm I.
- Điểm P ngược pha với điểm I khi \(\triangle\phi=2\pi\frac{d_1-d_1^{'}}{\lambda}=(2k+1)\pi.\)
Dựa vào phương trình (1) ta tìm được k = 0,1.=> có 2 điểm trên khoảng MI ngược pha với điểm I.
Điểm P vuông pha với điểm I khi \(\triangle\phi=2\pi\frac{d_1-d_1^{'}}{\lambda}=k\pi+\frac{\pi}{2}.\)
Dựa vào phương trình (1) ta tìm được k = 0,1,2,3. => có 4 điểm trên khoảng MI vuông pha với điểm I.
\(\omega_1=\frac{2\pi}{T_1}=\frac{10\pi}{3}\); \(\omega_2=\frac{2\pi}{T_2}=\frac{10\pi}{9}\)
\(\varphi_2=\omega_2t;\omega_1t=\pi-\varphi_2\)
\(\Rightarrow t=\frac{\pi}{\omega_1+\omega_2}=0,225\left(s\right)\)
Đáp án: B
HD Giải: λ/2 = 10mm => λ = 20mm
BC lớn nhất khi C nằm trên cực đại số 3 và gần A nhất
Ta có
=> CB = 67,6mm
Đáp án C
+ Khi xảy ra giao thoa, trên đoạn AB các cực đại giao thoa liên tiếp có vị trí cân bằng cách nhau một đoạn
∆ d = λ 2 = 10 ⇒ λ = 20 mm .
=> Số dãy cực đại giao thoa
- AB λ ≤ k ≤ AB λ ⇔ - 68 20 ≤ k ≤ 68 20 ⇔ - 3 , 4 ≤ k ≤ 3 , 4 .
→ Có 7 dãy cực đại ứng với k = 0 , ± 1 , ± 2 , ± 3 .
→ Để BC lớn nhất thì C nằm trên dãy cực đại ứng với k = –3.
+ Ta có d 2 - d 1 = 3 λ d 2 2 + d 1 2 = 68 2 ⇔ d 2 - 68 2 - d 2 2 = 60 ⇒ d 2 = 67 , 6 mm .
Hai điểm cách gần nhau nhất là: \(\dfrac{\lambda}{2}=10\Rightarrow \lambda=20cm\)
M O1 O2 d1 d2
M dao động cực đại và cách O2 xa nhất khi M nằm ở vân ngoài cùng về phía O1.
Vị trí vân cực đại này là: \([\dfrac{196}{2.20}]=4\)
\(\Rightarrow d_2-d_1=4.\lambda=4.20=80cm\)
\(\Rightarrow d_2= d_1+80=196+80=276cm\)
Chọn D
À, mình làm nhầm, vị trí vân cực đại này phải là: \([\dfrac{196}{20}]=9\)
\(\Rightarrow d_2-d_1=9.\lambda=9.20=180cm\)
\(\Rightarrow d_2=376cm\)