K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trò chơi quay bánh xe số trong chương trình truyền hình "Hãy chọn giá đúng" của kênh VTV3 Đài truyền hình Việt Nam, bánh xe số có 20 nấc điểm: 5, 10, 15,....., 100 với vạch chia đều nhau và giả sử rằng khả năng chuyển từ nấc điểm đã có tới các nấc điểm còn lại là như nhau. Trong mỗi lượt chơi có 2 người tham gia, mỗi người được quyền chọn quay 1 hoặc 2 lần, và điểm số của người...
Đọc tiếp

Trò chơi quay bánh xe số trong chương trình truyền hình "Hãy chọn giá đúng" của kênh VTV3 Đài truyền hình Việt Nam, bánh xe số có 20 nấc điểm: 5, 10, 15,....., 100 với vạch chia đều nhau và giả sử rằng khả năng chuyển từ nấc điểm đã có tới các nấc điểm còn lại là như nhau.

Trong mỗi lượt chơi có 2 người tham gia, mỗi người được quyền chọn quay 1 hoặc 2 lần, và điểm số của người chơi được tính như sau:

+ Nếu người chơi chọn quay 1 lần thì điểm của người chơi là điểm quay được.

+ Nếu người chơi chọn quay 2 lần và tổng điểm quay được không lớn hơn 100 thì điểm của người chơi là tổng điểm quay được.

+ Nếu người chơi chọn quay 2 lần và tổng điểm quay được lớn hơn 100 thì điểm của người chơi là tổng điểm quay được trừ đi 100.

Luật chơi quy định, trong mỗi lượt chơi người nào có điểm số cao hơn sẽ thắng cuộc, hòa nhau sẽ chơi lại lượt khác.

An và Bình cùng tham gia một lượt chơi, An chơi trước và có điểm số là 75. Tính xác suất để Bình thắng cuộc ngay ở lượt chơi này.

1
6 tháng 5 2019

Đáp án B

Bình có 2 khả năng thắng cuộc:

+) Thắng cuộc sau lần quay thứ nhất. Nếu Bình quay vào một trong 5 nấc: 80, 85, 90, 95, 100 thì sẽ thắng nên xác suất thắng cuộc của Bình trường hợp này là P 1   =   5 20   =   1 4  

+) Thắng cuộc sau 2 lần quay. Nếu Bình quay lần 1 vào một trong 15 nấc: 5, 10, ..., 75 thì sẽ phải quay thêm lần thứ 2. Ứng với mỗi nấc quay trong lần thứ nhất, Bình cũng có 5 nấc để thắng cuộc trong lần quay thứ 2, vì thế xác suất thắng cuộc của Bình trường hợp này là P 2   =   15   ×   5 20   ×   20   =   3 16  

Từ đó, xác suất thắng cuộc của Bình là

2 tháng 7 2019

Chọn đáp án C.

16 tháng 10 2021

chọn đáp án C

19 tháng 12 2019

Chọn A

Mỗi lần di chuyển, quân cờ chỉ có thể di chuyển một trong bốn cách sau: lên trên 1 ô (U), xuống dưới 1 ô (D), sang phải 1 ô (R), sang trái 1 ô (L). Quân cờ di chuyển bốn lần sẽ có 4 4 = 256 cách.

⇒ n ( Ω ) = 256 cách

Gọi A là biến cố quân cờ không trở về đúng vị trí ban đầu sau bốn lần di chuyển.

=>  A ¯ là biến cố quân cờ trở về đúng vị trí ban đầu sau bốn lần đi chuyển.

Để quân cờ trở về đúng vị trí ban đầu sau bốn lần đi chuyển thì phải thực hiện 1 trong 3 trường hợp sau:

  Trường hợp 1: Có một U, một D, một R, một L.

Xếp cách thực hiện U, D, R, L theo thứ tự có 4! = 24 cách.

  Trường hợp 2: Có hai U, hai D.

Xếp cách thực hiện hai U, hai D theo thứ tự có  cách.

  Trường hợp 3: Có hai R, hai L.

Xếp cách thực hiện hai R, hai L theo thứ tự có  cách.

30 tháng 8 2017


3 tháng 2 2019

Chọn B

Số cách xếp ngẫu nhiên là 5! cách.

Ta tìm số cách xếp thoả mãn:

+ Chọn 2 vị trí cạnh nhau (3,4) và (4,5) có 2 cách.

+ Xếp A và B vào 2 vị trí cạnh nhau vừa chọn có 2! cách.

+ Xếp 3 người còn lại có 3! cách.

Số cách xếp là 2.2!3!.  Xác suất cần tính bằng 

29 tháng 8 2018

Chọn A

Không gian mẫu là 8 3

Có hai trường hợp

+ Trường hợp 1: Bước 1 đi 4 ô góc thì bước 2 có 2 cách đi, bước 3 có 1 cách đi

+ Trường hợp 2: Bước 1 đi 4 ô còn lại thì bước 2 có 4 cách đi, bước 3 có 1 cách đi

Vậy tât cả có 4.2 + 4.4 = 24

Suy ra xác suất để sau 3 bước đi quân vua trở về ô ban đầu là: 

NV
7 tháng 1 2024

Để đi từ điểm tọa độ (0,0) đến tọa độ (n,m) thì cần n bước qua phải và m bước lên trên, nên cần tổng cộng \(m+n\) bước đi để đến đích.

Chọn m bước lên trên (trong tổng số \(m+n\) bước) có \(C_{m+n}^m\) cách

Còn lại n bước, chọn n cách sang phải, có \(C_n^n\) cách

Vậy tổng cộng có: \(C_{m+n}^m.C_n^n=C_{m+n}^n\) cách