Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(bx^2=ay^{2^{ }}=\dfrac{x^2}{\dfrac{1}{b}}=\dfrac{y^2}{\dfrac{1}{a}}=\dfrac{x^2+y^2}{\dfrac{a+b}{ab}}=\dfrac{ab}{a+b}.\)
\(\Leftrightarrow\dfrac{x^2}{a}=\dfrac{1}{a+b}=\dfrac{y^2}{b}.\)
\(\dfrac{x^{2016}}{a^{1008}}+\dfrac{y^{2016}}{b^{1008}}=\left(\dfrac{x^2}{a}\right)^{1008}+\left(\dfrac{y^2}{b}\right)^{1008}=2.\left(\dfrac{1}{a+b}\right)^{1008}=\dfrac{2}{\left(a +b\right)^{1008}}\left(dpcm\right)\)
Theo bài ra ta có:
\(bx^2=ay^2\) \(\Rightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}\)
\(x^2+y^2=1\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{x^2+y^2}{a+b}=\dfrac{1}{a+b}\)
\(\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{1}{a+b}\) \(\left(1\right)\)
Từ \(\left(1\right)\) suy ra :
\(\dfrac{x^{2016}}{a^{1008}}+\dfrac{y^{2016}}{b^{1008}}\) \(=\dfrac{\left(x^2\right)^{1008}}{a^{1008}}+\dfrac{\left(y^2\right)^{1008}}{b^{1008}}\)
\(=\left(\dfrac{x^2}{a}\right)^{1008}+\left(\dfrac{y^2}{b}\right)^{1008}\)
\(=\left(\dfrac{1}{a+b}\right)^{1008}+\left(\dfrac{1}{a+b}\right)^{1008}\)
\(=2\cdot\left(\dfrac{1}{a+b}\right)^{1008}\)
\(=2\cdot\dfrac{1^{1008}}{\left(a+b\right)^{1008}}\)
\(=2\cdot\dfrac{1}{\left(a+b\right)^{1008}}\)
\(=\dfrac{2}{a+b}^{1008}\)
Vậy \(\dfrac{x^{2016}}{a^{1008}}+\dfrac{y^{2016}}{b^{1008}}=\dfrac{2}{a+b}^{1008}\)
Ta có: \(\dfrac{x^4+2016}{x^4+1008}\) đạt GTNN khi \(x^4+1008\) đạt GTNN; đạt GTNN khi \(x^4+2016\) đạt GTLN
Lại có:
\(x^4\ge0\forall x\\ \Rightarrow x^4+1008\ge1008\forall x\)
\(\Rightarrow\) GTNN của \(x^4+1008=1008\) tại \(x=0\)
Thay \(x=0\) vào \(x^4+2016\), ta có:
\(0^4+2016=2016\)
\(\Rightarrow\) GTLN của: \(\dfrac{x^4+2016}{x^4+1008}=\dfrac{2016}{1008}=2\) tại \(x=0\)
\(\left|x-2016\right|+\left|1008-\frac{1}{2}y\right|=0\)
\(\Leftrightarrow\begin{cases}x-2016=0\\1008-\frac{1}{2}y=0\end{cases}\)\(\Leftrightarrow x=y=2016\)
\(\left|x-2016\right|+\left|1008-\frac{1}{2}y\right|=0\)
\(\Rightarrow\left|x-2016\right|=0\) và \(\left|1008-\frac{1}{2}y\right|=0\)
+) \(\left|x-2016\right|=0\Rightarrow x-2016=0\Rightarrow x=2016\)
+) \(\left|1008-\frac{1}{2}y\right|=0\)
\(\Rightarrow1008-\frac{1}{2}y=0\)
\(\Rightarrow\frac{1}{2}y=1008\)
\(\Rightarrow y=2016\)
Vậy \(x=y=2016\)