Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)
\(=\left(\sqrt{3}-1\right)^2\left(2+\sqrt{3}\right)=\left(4-2\sqrt{3}\right)\left(2+\sqrt{3}\right)\)
\(=2\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=2\)
\(B=\frac{\left(\sqrt{a}-1\right)\left(\sqrt{6}-\sqrt{2}\right)\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}{a\left(\sqrt{a}-1\right)\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{\sqrt{6}-\sqrt{2}}{a+\sqrt{ab}}\)
Câu hỏi của Phương Boice - Toán lớp 8 - Học toán với OnlineMath
Đặt \(\sqrt{x^2-x+1}=a\left(ĐK:a>0\right)\)
\(pt\Leftrightarrow\frac{\left(x^6+3x^4a\right)\left(4-a^2\right)}{4\left(2+a\right)a^2}=a\left(2-a\right)\)
\(\Leftrightarrow\left(x^6+3x^4a\right)\left(4-a^2\right)=4a^3\left(4-a^2\right)\)
\(\Leftrightarrow\left(4-a^2\right)\left(x^6+3x^4a-4a^3\right)=0\)
TH1: \(4-a^2=0\Leftrightarrow\orbr{\begin{cases}a=-2\left(l\right)\\a=2\left(n\right)\end{cases}}\)
Với a = 2 , \(\sqrt{x^2-x+1}=2\Rightarrow x^2-x-3=0\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{13}+1}{2}\\x=\frac{-\sqrt{13}+1}{2}\end{cases}}\)
TH2: \(x^6+3x^4a-4a^3=0\Rightarrow x^6-x^4a+4x^4a-4x^2a^2+4x^2a^2-4a^3=0\)
\(\Leftrightarrow\left(x^2-a\right)\left(x^4+4x^2a+4a^2\right)=0\Leftrightarrow\left(x^2-a\right)\left(x^2+2a\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=a\\x^2=-2a\left(l\right)\end{cases}}\)
Với \(x^2=a\Rightarrow x^2=\sqrt{x^2-x+1}\)
Đến đây bình phương và tìm ra nghiệm.
1. \(\left(\sqrt{5}-\sqrt{6}\right)=\left(\sqrt{5}\right)^2-2\sqrt{5}\sqrt{6}+\left(\sqrt{6}\right)^2=5-2\sqrt{30}+6\)
2. \(\left(\sqrt{3}-\sqrt{5}\right)^2=\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot\sqrt{5}+\left(\sqrt{5}\right)^2=3-2\sqrt{15}+5\)
3. \(\left(2\sqrt{2}+\sqrt{3}\right)^2=\left(2\sqrt{2}\right)^2+2\cdot2\sqrt{2}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2=8+4\sqrt{6}+3\)
4. \(\left(\sqrt{4}-\sqrt{17}\right)^2=\left(\sqrt{4}\right)^2-2\cdot\sqrt{4}\cdot\sqrt{17}+\left(\sqrt{17}\right)^2=4-4\sqrt{47}+17\)
5. \(\sqrt{\left(\sqrt{5}-3\right)^2}=\left|\sqrt{5}-3\right|=\left|-3+\sqrt{5}\right|=3-\sqrt{5}\)
6. \(\left(2\sqrt{5}-\sqrt{7}\right)\left(2\sqrt{5}+\sqrt{7}\right)=\left(2\sqrt{5}\right)^2-\left(\sqrt{7}\right)^2=4\cdot5-7=13\)
7. \(\left(5\sqrt{2}+2\sqrt{3}\right)\left(2\sqrt{3}-5\sqrt{2}\right)=\left(2\sqrt{3}\right)^2-\left(5\sqrt{2}\right)^2=12-50=-38\)
8. \(\sqrt{\left(5+2\sqrt{6}\right)^2}-\sqrt{\left(5-2\sqrt{6}\right)^2}=\left|5+2\sqrt{6}\right|-\left|5-2\sqrt{6}\right|=5+2\sqrt{6}-\left(5-2\sqrt{6}\right)=4\sqrt{6}\)9. \(\sqrt{\left(\sqrt{7}-2\right)^2}+\sqrt{\left(\sqrt{7}+2\right)^2}=\left|\sqrt{7}-2\right|+\left|\sqrt{7}+2\right|=-2+\sqrt{7}+2+\sqrt{7}=2\sqrt{7}\)
10. \(\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\left|\sqrt{3}+\sqrt{2}\right|+\left|\sqrt{3}-\sqrt{2}\right|=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}=2\sqrt{3}\)
#em mới lớp 8 nên không chắc lắm ạ :((
\(=\left(\sqrt{5}-1\right)\left(6-2\sqrt{5}\right)\sqrt{6-2\sqrt{5}}\)
\(=\left(6-2\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\left(6-2\sqrt{5}\right)\left(\sqrt{5}-1\right)^2\)
\(=\left(6-2\sqrt{5}\right)\left(6-2\sqrt{5}\right)\)
\(=\left(6-2\sqrt{5}\right)^2=56-24\sqrt{5}\)
Có lẽ bạn viết nhầm đề, đề thế này mới hợp lý:
\(\left(\sqrt{10}-\sqrt{2}\right)\left(6+2\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
a) \(A=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(A=\sqrt{\left(2+\sqrt{3}\right)\left(\sqrt{2+\sqrt{3}}+2\right)\left(-\sqrt{2+\sqrt{3}}+2\right)}\)
\(A=\sqrt{1}\)
\(A=1\)
b)\(B=\left(\frac{\sqrt{x}}{\sqrt{xy}-y}-\frac{\sqrt{y}}{\sqrt{xy}-x}\right).\left(x\sqrt{y}-y\sqrt{x}\right)\)
\(B=\frac{\sqrt{xy}}{\sqrt{xy}-y}x\sqrt{y}+\frac{\sqrt{x}}{\sqrt{xy}-y}y\sqrt{x}+\left(-\frac{\sqrt{y}}{\sqrt{xy}-x}\right)^2x\sqrt{y}+y\sqrt{x}\)
\(B=x\frac{\sqrt{x}}{\sqrt{xy}-y}\sqrt{y}+y\frac{\sqrt{x}}{\sqrt{xy}-y}\sqrt{x}+x\frac{\sqrt{x}}{\sqrt{xy}-x}\sqrt{y}-y\sqrt{x}\frac{\sqrt{y}}{\sqrt{xy}-y}\)
\(B=\frac{-x^{\frac{5}{2}}\sqrt{y}+\sqrt{x}.y^{\frac{5}{2}}}{\left(\sqrt{xy}-y\right)\left(\sqrt{xy}-x\right)}\)
\(B=\frac{\left(\sqrt{x}.y^{\frac{5}{2}}-x^{\frac{5}{2}}\sqrt{y}\right)\left(y+\sqrt{xy}\right)\left(x+\sqrt{xy}\right)}{\left(-y^2+xy\right)\left(-x^2+xy\right)}\)
c) \(C=\sqrt{\left(3-\sqrt{5}\right)^2+\sqrt{6}-2\sqrt{5}}\)
\(C=14-6\sqrt{5}+\sqrt{6}-2\sqrt{5}\)
\(C=14-8\sqrt{5}+\sqrt{6}\)
\(C=\sqrt{14-8\sqrt{5}+\sqrt{6}}\)
a,\(\sqrt{x+3+4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=5\)
\(\Leftrightarrow\sqrt{x-1+4\sqrt{x-1+4}}+\sqrt{x-1-6\sqrt{x-1}+9}=5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1+2}\right)^2}+\sqrt{\left(\sqrt{x-1-3}\right)^2}=5\)
\(\Leftrightarrow\sqrt{x-1}+2+|\sqrt{x-1}-3|=5\Leftrightarrow|\sqrt{x-1}-3|=3-\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{x-1}-3\le0\left(|A|=-A\Leftrightarrow A\le0\right)\)
\(\Leftrightarrow\sqrt{x-1}\le3\Leftrightarrow0\le x-1\le3^2\Leftrightarrow1\le x\le10\)
Nghiệm của phương trình đã cho là : \(1\le x\le10\)
b, \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)=4\)
\(\Leftrightarrow\left[\left(4x+1\right)\left(3x+2\right)\right]\left[\left(12x-1\right)\left(x+1\right)\right]=4\)
\(\Leftrightarrow\left(12x^2+8x+3x+2\right)\left(12x^2+12x-x-1\right)=4\)
\(\Leftrightarrow\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)=4\)
\(\Leftrightarrow\left(12x^2+11x+\frac{1}{2}+\frac{3}{2}\right)\left(12x^2+11x+\frac{1}{2}-\frac{3}{2}\right)=4\)
\(\Leftrightarrow\left(12x^2+11x+\frac{1}{2}\right)^2-\left(\frac{3}{2}\right)^2=4\Leftrightarrow\left(12x^2+11x+\frac{1}{2}\right)^2=4+\frac{9}{4}\)
\(\Leftrightarrow\left(12x^2+11x+\frac{1}{2}\right)^2=\left(\frac{5}{2}\right)^2\Leftrightarrow\orbr{\begin{cases}12x^2+11x+\frac{1}{2}=\frac{5}{2}\\12x^2+11x+\frac{1}{2}=-\frac{5}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}12x^2+11x-2=0\left(1\right)\\12x^2+11x+3=0\left(2\right)\end{cases}}\)
Giải (1) \(\Delta=121+96=217\)
\(x_1=\frac{-11+\sqrt{217}}{24};x_2=\frac{-11-\sqrt{217}}{24}\)
Giải (2) \(\Delta=121-144=-23< 0\).Phương trình vô nghiệm.
Phương trình có 2 nghiệm phân biệt :
\(x_1=\frac{-11+\sqrt{217}}{24};x_2=\frac{-11-\sqrt{217}}{24}\)
\(\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
\(=\left(\sqrt{6}+\sqrt{3}+\sqrt{2}+1\right)\left(5\sqrt{6}-4\sqrt{3}-3\sqrt{2}+5-2\sqrt{2}-\sqrt{3}\right)\)
\(=\left(\sqrt{6}+\sqrt{3}+\sqrt{2}+1\right)\left(5\sqrt{6}-5\sqrt{3}-5\sqrt{2}+5\right)\)
\(=5\left(\sqrt{6}+\sqrt{3}+\sqrt{2}+1\right)\left(\sqrt{6}-\sqrt{3}-\sqrt{2}+1\right)\)
\(=5\left[\left(\sqrt{6}+1\right)^2-\left(\sqrt{3}+\sqrt{2}\right)^2\right]\)
\(=5.\left(6+1+2\sqrt{6}-3-2\sqrt{6}\right)\)
\(=5.2=10\)
Chúc bạn học tốt và nhớ click cho mình với nhá!