Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A= 1.2+2.3 +.......+99.100
3A= 1.2.3+2.3.4+3.4.3 +......+ 99.100.3
3A= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... . 99.100. (101 - 98)
3A = (1.2.3 + 2.3.4 + 3.4.5 +...... + 99.100.101) - (0.1.2 + 1.2.3 + 2.3.4 +.......+ 98.99.100)
3A = 99.100.101 - 0.1.2
3A = 999900 - 0
3A= 999900
A= 999900 : 3
A = 333300
A=1.2+2.3+3.4+…+99.100
3A = 1.2.3 + 2.3.3 + ... + 99.100.3
3A = 1.2.3 + 2.3.(4-1) + ... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + ... + 99.100.101 - 98.99.100
3A = 99.100.101
=> A = \(\frac{99.100.101}{3}\)= 333 300
A =\(\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3\cdot4}+...+\frac{5}{99.100}\)
A = 5 x (\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\) )
A = 5 x \(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
A = 5 x \(\left(1-\frac{1}{100}\right)\)
A = 5 x \(\frac{99}{100}\)
A = \(\frac{495}{100}\)
A= \(\frac{99}{20}\)
Ta co : A =5.(1/1.2+1/2.3+1/3.4+....+1/99.100)
A= 5.(1-1/2+1/2-1/3+1/3-1/4+.....+1/99-1/100)
Rut gon tung so ta co :A=5.(1-1/100)
A=5.99/100
A=1.99/50=99/50
\(B=-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{98.99}-\frac{1}{99.100}\\
=-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\\
=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\\
=-\left(1-\frac{1}{100}\right)=\frac{-99}{100}\)
A = \(\frac{1}{1}\)-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+... + \(\frac{1}{99}\)-\(\frac{1}{100}\)
A = \(\frac{1}{1}\)-\(\frac{1}{100}\)
ai tốt bụng thì tk cho mk nha, mk đg âm điểm đây
A = \(\frac{99}{100}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
=\(1-\frac{1}{100}=\frac{99}{100}\)
Ta có:
3S = 1.2.3 + 2.3.4 + 3.4.3 + ... + 99.100.3
3S = 1.2 ( 3 - 0 ) + 2.3. ( 4 - 1 ) + 3.4 . ( 5 - 2 )............... 99.100 . ( 101 - 98 )
3S = ( 1.2.3 + 2.3.4 + 3.4.5 + ... + 99.100.101 ) - ( 0.1.2 + 1.2.3 + 2.3.4 + ... + 98.99.100 )
3S = 99.100.101 - 0.1.2
3S = 999900 - 0
3S = 999900
S = 999900 : 3
S = 333300
Gọi A là biểu thức ta có:
A = 1.2+2.3+3.4+......+99.100
Gấp A lên 3 lần ta có:
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
A . 3 = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300
1.50+2.49+3.48+...+49.2+50.1=
= (1.50+2.50+3.50+...+50.1)-(1.2+2.3+3.4+...+49.50)
= (2500+50).50:2-41650
= 63750-41650=22100
2,
A = 1.2 + 2.3 + 3.4 + ... + 2011.2012
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2011.2012.3
3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 2011.2012.(2013 - 2010)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 2011.2012.2013 - 2010.2011.2012
3A = 2011.2012.2013
A = 2011.2012.2013 : 3
A = 2714954572
Co 3A= (3-0).1.2+(4-1).2.3+...+(101-98).99.100
3A= 1.2.3-0.1.2+2.3.4-1.2.3+...+101.99.100-98.99.100
3A=101.100.99
A=101.100.33
A=333300
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3A=98.100.101
A=99.100.101 / 3
A=333300
Mình cho bạn dạng tổng quát nha
1.2+2.3+...+n.(n+1)=n(n+1)(n+2) / 3
3A=1.2.3+2.3.(4-1)+...........+99.100.(101-98)
3A=1.2.3+2.3.4-1.2.3+............+99.100.101-98.99.100
3A=99.100.101
A=99.100.101:3
A=333300