Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1(2+1)+2(3+1)+3(4+1)+...+99(100 +1 )
A=1.2+1+2.3+2+3.4+3...99.100+99
A=(1.2+2.3+3.4+...99.100)+(1+2+3+4...99)
giải:
Đặt A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100
4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100)4
4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101
4A=98.99.100.101
=>A=98.99.100.101/4
Đặt A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 98.99.100
4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + ... + 98.99.100.4
4A = 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) + ... + 98.99.100.(101 - 97)
4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 98.99.100.101 - 97.98.99.100
4A = 98.99.100.101
=> A = 98.99.100.101 : 4
=> A = 24497550
Tính:
S = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+\frac{1}{4.5.6}+...+\frac{1}{98.99.100}\)
\(2S=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(2S=\frac{1}{2}-\frac{1}{9900}\)
\(2S=\frac{4949}{9900}\)
\(S=\frac{4949}{19800}\)
Ta xét : \(\frac{1}{1.2}-\frac{1}{2.3}=\frac{2}{1.2.3}\)
\(\frac{1}{2.3}-\frac{1}{3.4}=\frac{2}{2.3.4}\)
...
\(\frac{1}{98.99}-\frac{1}{99.100}=\frac{2}{98.99.100}\)
Ta có : 2S = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
=> 2S = \(\frac{1}{1.2}-\frac{1}{99.100}\)
=> 2S = \(\frac{4949}{9900}\)
=> S = \(\frac{4949}{19800}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{4.5.6}+....+\frac{1}{98.99.100}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(a=\frac{2.9.8+3.12.10+4.15.12+.......+98.297.200}{2.3.4+3.4.5+4.5.6+.........+98.99.100}\)
\(a=\frac{2.\left(3.3\right).\left(4.2\right)+3.\left(4.3\right).\left(5.2\right)+..........+98.\left(99.3\right).\left(100.2\right)}{2.3.4+3.4.5+4.5.6+.................+98.99.100}\)
\(a=\frac{2.3.4.\left(3.2\right)+3.4.5.\left(3.2\right)+............+98.99.100.\left(3.2\right)}{2.3.4+3.4.5+........+98.99.100}\)
\(a=\frac{\left(3.2\right).\left(2.3.4+3.4.5+4.5.6+...........+98.99.100\right)}{2.3.4+3.4.5+4.5.6+............+98.99.100}\)
\(a=3.2\)
\(a=6\)
Vậy a=6.
\(S=1.2.3+2.3.4+...+97.98.99\)
\(\Rightarrow4S=1.2.3.4+2.3.4\left(5-1\right)+...+97.98.99.\left(100-96\right)\)
\(\Rightarrow4S=1.2.3.4+2.3.4.5-1.2.3.4+...+97.98.99.100-96.97.98.99\)
\(\Rightarrow4S=97.98.99.100\)
\(\Rightarrow S=\frac{97.98.99.100}{4}\)
\(\Rightarrow S=97.98.99.25\)
S=1.2.3+2.3.3.4.5+...+97.98.99
4.S=1.2.3.4+2.3.4(5-1)+3.4.5.(6-2)+....+97.98.99.(100-96)
4S-S=1.2.3.4+2.3.4.(5-1)-1.2.3.4+3.4.5.(6-2)-2.3.4.(5-1)+...+97.98.99.(100-96)-96.97.98.(99-95)
S= 97.98.99.100:4=23 527 350
A= 1.2.3 +2.3.4 + 3.4.5 + ... + 97.98.99
=> 4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + ... + 97.98.99.4
=> 4A =1.2.3.4 + 2.3.4.(5-1) + 3.4.5(6-2) + ...+ 97.98.99( 100 - 96)
=> 4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + 97.98.99.100 - 96.97.98.99.
=>4A= 97.98.99.100
=> A= (97.98.99.100)/ 4 = 97.98.99.25
Em có thể tham khảo cách làm tương tự như link:
Cách làm nhé. Đừng chép hết. Đề bài của bạn khác 1 chút so với của em.
Câu hỏi của Ngô Hồng Thuận - Toán lớp 7 - Học toán với OnlineMath
Đặt A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100
4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100)4
4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101
4A=98.99.100.101
=>A=98.99.100.101/4
TICK ĐÚNG GIÚP MÌNH Ặ