K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

\(S=1.2.3+2.3.4+...+97.98.99\)

\(\Rightarrow4S=1.2.3.4+2.3.4\left(5-1\right)+...+97.98.99.\left(100-96\right)\)

\(\Rightarrow4S=1.2.3.4+2.3.4.5-1.2.3.4+...+97.98.99.100-96.97.98.99\)

\(\Rightarrow4S=97.98.99.100\)

\(\Rightarrow S=\frac{97.98.99.100}{4}\)

\(\Rightarrow S=97.98.99.25\)

5 tháng 1 2017

S=1.2.3+2.3.3.4.5+...+97.98.99

4.S=1.2.3.4+2.3.4(5-1)+3.4.5.(6-2)+....+97.98.99.(100-96)

4S-S=1.2.3.4+2.3.4.(5-1)-1.2.3.4+3.4.5.(6-2)-2.3.4.(5-1)+...+97.98.99.(100-96)-96.97.98.(99-95)

S= 97.98.99.100:4=23 527 350

22 tháng 10 2019

A= 1.2.3 +2.3.4 + 3.4.5 + ... + 97.98.99

=> 4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + ... + 97.98.99.4

=> 4A =1.2.3.4 + 2.3.4.(5-1) + 3.4.5(6-2) + ...+ 97.98.99( 100 - 96)

=> 4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + 97.98.99.100 - 96.97.98.99.

=>4A= 97.98.99.100

=> A= (97.98.99.100)/ 4 = 97.98.99.25

22 tháng 10 2019

Em có thể tham khảo cách làm tương tự như link: 

Cách làm nhé. Đừng chép hết. Đề bài của bạn khác 1 chút so với của em.

Câu hỏi của Ngô Hồng Thuận - Toán lớp 7 - Học toán với OnlineMath

6 tháng 10 2022

Đặt A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100

4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100)4

4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)

4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100

4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101

4A=98.99.100.101

=>A=98.99.100.101/4

TICK ĐÚNG GIÚP MÌNH Ặ

 

27 tháng 1 2016

1/2.(2/1.2.3+2/2.3.4+...+2.97.98.99)=1/2.(1/1.2-1/2.3+1/2.3-1/3.4+...+1/97.98-1/98.99)=1/2.(1/1.2-1/98.99) ban tu tinh lay nhe nho tick nha                                                                                            

5 tháng 1 2017

Bài 1:

Ta thấy : \(\left\{\begin{matrix}\left(x-3\right)^2\ge0\\\left|y+1\right|\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-3\right)^2+\left|y+1\right|\ge0\)

\(\Rightarrow\left(x-3\right)^2+\left|y+1\right|-3\ge-3\)

\(\Rightarrow A\ge-3\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix}\left(x-3\right)^2=0\\\left|y+1\right|=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x-3=0\\y+1=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

Vậy \(Min_A=-3\) khi \(\left\{\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

Bài 2:

\(S=1\cdot2\cdot3+2\cdot3\cdot4+...+97\cdot98\cdot99\)

\(4S=4\left(1\cdot2\cdot3+2\cdot3\cdot4+...+97\cdot98\cdot99\right)\)

\(4S=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot\left(5-1\right)+...+97\cdot98\cdot99\left(100-96\right)\)

\(4S=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+...+97\cdot98\cdot99\cdot100-96\cdot97\cdot98\cdot99\)

\(4S=97\cdot98\cdot99\cdot100\Rightarrow S=\frac{97\cdot98\cdot99\cdot100}{4}=23527350\)

5 tháng 2 2016

bai toan nay kho qua

5 tháng 2 2016

mày là thằng nào mạo danh là olm hả?

7 tháng 5 2018

tao có:

2p=2/1.2.3+2/2.3.4+...+2/n.n(+1)n(n+2)

2p=3-1/1.2.3+4-2/1.2.3+...+(n+2)-n/n.(n+1).(n+2)

2p=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+(n+2)/n.(n+1).(n+2)-n/n.(n+1).(n+2)

2p=1/1.2-1/2.3+1/2.3-1/3.4+...+1/n.(n+1)-1/(n+1).(n+2)

2p=1/1.2-1/(n+1).(n+2)

2p=(n+!).(n+2)-2/(2n+2).(n+2)

suy ra p=(n+1).(n+2)-2/(2n+2).(2n+4)

2s=3-1/1.2.3+4-2/1.2.3+...+50-48/48.49.50

2s=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+50/49.50.48-48/48.50.49

2s=1/1.2-1/2.3+1/2.3-1/3.4+...+1/48.49-1/49.50

2s=1/1.2-1/49.50

'2s=1/2-1/2450

2s=1225/2450-1/2450

2s=1224/2450

s=612/1225

8 tháng 5 2018

\(P=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)1

\(P=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)}{2}\)

S cx tinh giong v