K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2019

1/1.3.5 + 1/3.5.7 + 1/5.7.9 +.....+ 1/99.101.103

= 1/4. [4/1.3.5 + 4/3.5.7 + 4/ 5.7.9 +....+ 4/99.101.103]

=1/4. [1/1.3 - 1/3.5 + 1/3.5 - 1/5.7 +....+ 1/99.101 - 1/101.103]

= 1/4. [1/1.3 - 1/101.103]

=1/4. 10406/31209

= 5230/62418

15 tháng 9 2019

\(A=\frac{1}{1\cdot3\cdot5}+\frac{1}{3\cdot5\cdot7}+....+\frac{1}{99\cdot101\cdot103}\)

\(2A=\frac{1}{1\cdot3}-\frac{1}{3\cdot5}+\frac{1}{3\cdot5}-\frac{1}{5-7}+....+\frac{1}{99\cdot101}-\frac{1}{101\cdot103}\)

\(2A=\frac{1}{1\cdot3}-\frac{1}{101\cdot103}\)

Tính nốt

19 tháng 7 2017

\(\dfrac{1}{1.3.5}+\dfrac{1}{3.5.7}+...+\dfrac{1}{2013.2015.2017}\)

\(=\dfrac{1}{4}\left(\dfrac{4}{1.3.5}+\dfrac{4}{3.5.7}+...+\dfrac{4}{2013.2015.2017}\right)\)

\(=\dfrac{1}{4}\left(\dfrac{1}{1.3}-\dfrac{1}{3.5}+\dfrac{1}{3.5}-\dfrac{1}{5.7}+...+\dfrac{1}{2013.2015}-\dfrac{1}{2015.2017}\right)\)\(=\dfrac{1}{4}\left(\dfrac{1}{3}-\dfrac{1}{2015.2017}\right)=\dfrac{1}{12}-\dfrac{1}{4.2015.2017}\)

19 tháng 7 2017

Cam on nhìu!

NM
7 tháng 8 2021

ta có 

\(A=6\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+..+\frac{4}{25.27.29}\right)=6\left(\frac{5-1}{1.3.5}+\frac{7-3}{3.5.7}+..+\frac{29-25}{25.27.29}\right)\)

\(=6\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+..+\frac{1}{25.27}-\frac{1}{27.29}\right)=6\left(\frac{1}{3}-\frac{1}{27.29}\right)\)

\(=2-\frac{2}{9.29}=\frac{520}{261}\)

4 tháng 5 2021

Đặt tổng là A

\(\frac{A}{6}=\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{6}{25.27.29}\)

\(\frac{A}{6}=\frac{5-1}{1.3.5}+\frac{7-3}{3.5.7}+\frac{9-5}{5.7.9}+...+\frac{29-25}{25.27.29}\)

\(\frac{A}{6}=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\)

\(\frac{A}{6}=\frac{1}{1.3}-\frac{1}{27.29}\Rightarrow A=\left(\frac{1}{3}-\frac{1}{27.29}\right):6\)

DD
27 tháng 5 2021

\(A=\frac{24}{1.3.5}+\frac{24}{3.5.7}+\frac{24}{5.7.9}+...+\frac{24}{25.27.29}\)

\(A=6\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)

\(A=6\left(\frac{5-1}{1.3.5}+\frac{7-3}{3.5.7}+\frac{9-5}{5.7.9}+...+\frac{29-25}{25.27.29}\right)\)

\(A=6\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)

\(A=6\left(\frac{1}{1.3}-\frac{1}{27.29}\right)=\frac{520}{261}\)

3 tháng 1 2017

Cho x và y thoả mãn (x-45)2=-|2y+5| tính giá trị của biểu thức:   M=x2+y2+29/10.y-15

6 tháng 2 2020

Ta có:

\(A=\frac{36}{1.3.5}+\frac{36}{3.5.7}+\frac{36}{5.7.9}+...+\frac{36}{25.27.29}\)

\(\Rightarrow A=9.\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)

\(\Rightarrow A=9.\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)

\(\Rightarrow A=9.\left(\frac{1}{1.3}-\frac{1}{27.29}\right)\)

\(\Rightarrow A=9.\left(\frac{1}{3}-\frac{1}{783}\right)\)

\(\Rightarrow A=9.\frac{1}{3}-9.\frac{1}{783}\)

\(\Rightarrow A=3-\frac{1}{87}\)

\(3-\frac{1}{87}< 3.\)

\(\Rightarrow A< 3\left(đpcm\right).\)

Chúc bạn học tốt!

27 tháng 8 2019

\(\frac{20}{1.3.5}+\frac{20}{3.5.7}+\frac{20}{5.7.9}+...+\frac{20}{25.27.29}\)

\(=5.\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)

\(=5.\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)

\(=5.\left(\frac{1}{1.3}-\frac{1}{27.29}\right)\)

\(=5.\left(\frac{1}{3}-\frac{1}{783}\right)\)

\(=5.\frac{260}{783}\)

\(=\frac{1300}{783}\)

Ta có:\(\frac{1}{\left(n-2\right)n}-\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)-\left(n-2\right)n}{\left(n-2\right)n\cdot n\left(n+2\right)}\)

                         \(=\frac{n\left(n+2-n+2\right)}{n\cdot\left(n-2\right)n\left(n+2\right)}=\frac{4}{\left(n-2\right)n\left(n+2\right)}\)

Áp dụng\(\frac{20}{1.3.5}+\frac{20}{3.5.7}+...+\frac{20}{25.27.29}\)

     \(=5\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)

\(=5\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)

\(=5\left(\frac{1}{1.3}-\frac{1}{27.29}\right)\)

\(=5\cdot\frac{261-1}{783}=5\cdot\frac{260}{783}=\frac{1300}{783}\)