K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2020

\(\frac{19}{x+y}+\frac{19}{y+z}+\frac{19}{z+x}=\frac{133}{10}\)

\(\Rightarrow19\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{133}{10}\)

\(\Rightarrow\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{7}{10}\)

\(\frac{7x}{y+z}+\frac{7y}{z+x}+\frac{7z}{x+y}=\frac{133}{10}\)

\(\Rightarrow7\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=\frac{133}{10}\)

\(\Rightarrow\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=\frac{19}{10}\)

\(\Rightarrow\left(\frac{x}{y+z}+1+\frac{y}{z+x}+1+\frac{z}{x+y}+1\right)=\frac{19}{10}+3\)

\(\Rightarrow\left(\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}\right)=\frac{49}{10}\)

\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)=\frac{49}{10}\)

\(\Rightarrow\left(x+y+z\right).\frac{7}{10}=\frac{49}{10}\)

\(\Rightarrow x+y+z=7\)

Vậy x + y + z = 7

7 tháng 1 2018

ta co :

a+b+c=bc+ac+ab/abc =a+b+c=bc+ac+ab (vi abc=1)

ta co : (a-1).(b-1).(c-1) =(ab-a-b+1).(c-1) =abc-ab-ac+a-bc+b+c-1 =(abc-1)+(a+b+c)-(ab+ac+bc) =(1-1)+(bc+ac+ab)-(ab+ac+bc) =0

do (a-1).(b-1).(c-1)=0 (cmt) =>a=b=c=1 thay vao p =>p=(1^19-1).(1^5-1).(1^1890-1) =(1-1).(1-1).(1-1) 0 

15 tháng 6 2016

Từ \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)

\(\Rightarrow\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=x+y+z\)

\(\Rightarrow\frac{x^2+x\left(y+z\right)}{y+z}+\frac{y^2+y\left(z+x\right)}{z+x}+\frac{z^2+z\left(x+y\right)}{x+y}=x+y+z\)

\(\Rightarrow\frac{x^2}{y+z}+x+\frac{y^2}{z+x}+y+\frac{z^2}{x+y}+z=x+y+z\)

\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)

\(\Rightarrow P=\left(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\right)\left(3x^8+2y^{10}+z^4\right)=0\)

Vậy P=0

16 tháng 6 2016

giải hay thật

4 tháng 5 2020

Bài 1 quan trong là đoán dấu đẳng thức.

1/  Có: \(36=\left(3+2+1\right)\left(a^2+b^2+c^2\right)\ge\left(\sqrt{3}a+\sqrt{2}b+c\right)^2\)

\(\therefore\sqrt{3}a+\sqrt{2}b+c\le6\)

\(\frac{1}{3}\left(\frac{a}{bc}+\frac{3b}{2ca}\right)+\frac{3}{2}\left(\frac{b}{ca}+\frac{2c}{ab}\right)+2\left(\frac{c}{ab}+\frac{a}{3bc}\right)\)

\(\ge\frac{\sqrt{6}}{3c}+\frac{3\sqrt{2}}{a}+\frac{4\sqrt{3}}{3b}\)

\(=\frac{\left(\frac{\sqrt{6}}{3}\right)}{c}+\frac{\left(3\sqrt{6}\right)}{\sqrt{3}a}+\frac{\left(\frac{4\sqrt{6}}{3}\right)}{\sqrt{2}b}\)

\(\ge\frac{\left(\sqrt{\frac{\sqrt{6}}{3}}+\sqrt{3\sqrt{6}}+\sqrt{\frac{4\sqrt{6}}{3}}\right)^2}{\sqrt{3}a+\sqrt{2}b+c}\ge2\sqrt{6}\)

Đẳng thức xảy ra khi \(a=\sqrt{3},b=\sqrt{2},c=1\)

5 tháng 5 2020

Hiếm hoi thấy anh tth làm bất ko dùng sos

Câu 3: 

a: \(G=\dfrac{a^2}{b\left(a+b\right)}-\dfrac{b^2}{a\left(a-b\right)}+\dfrac{-\left(a^2+b^2\right)}{ab}\)

\(=\dfrac{a^3\left(a-b\right)-b^3\left(a+b\right)-\left(a^2+b^2\right)\left(a^2-b^2\right)}{ab\left(a-b\right)\left(a+b\right)}\)

\(=\dfrac{a^4-a^3b-ab^3-b^4-a^4+b^4}{ab\left(a-b\right)\left(a+b\right)}\)

\(=\dfrac{-ab\left(a^2+b^2\right)}{ab\left(a-b\right)\left(a+b\right)}=\dfrac{-a^2-b^2}{a^2-b^2}\)

b: \(\dfrac{a}{b}=\dfrac{a+1}{b+5}\)

nên ab+5a=ab+b

=>5a=b

\(G=\dfrac{-a^2-\left(5a\right)^2}{a^2-\left(5a\right)^2}=\dfrac{-a^2-25a^2}{a^2-25a^2}=\dfrac{-26}{-24}=\dfrac{13}{12}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Lời giải:

Từ điều kiện $xyz=1$ ta có:

\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Leftrightarrow x+y+z=xy+yz+xz\)

\(\Leftrightarrow x+y+z-xy-yz-xz+xyz-1=0\)

\(\Leftrightarrow x(1-y)+(y+z-yz-1)+(xyz-xz)=0\)

\(\Leftrightarrow x(1-y)+(1-y)(z-1)-xz(1-y)=0\)

\(\Leftrightarrow (1-y)(x+z-1-xz)=0\)

\(\Leftrightarrow (1-y)(1-x)(z-1)=0\)

\(\Leftrightarrow (x-1)(y-1)(z-1)=0\)

Khi đó:
\(P=(x^{19}-1)(y^5-1)(z^{1890}-1)=(x-1)(x^{18}+x^{17}+...+1)(y-1)(y^4+...+1)(z-1)(z^{1889}+...+1)\)

\(=(x-1)(y-1)(z-1).A=0\)

1 tháng 12 2016

ta co : a+b+c=bc+ac+ab/abc

                    =a+b+c=bc+ac+ab     (vi abc=1)

    ta co : (a-1).(b-1).(c-1)

              =(ab-a-b+1).(c-1)

               =abc-ab-ac+a-bc+b+c-1

              =(abc-1)+(a+b+c)-(ab+ac+bc)

              =(1-1)+(bc+ac+ab)-(ab+ac+bc)

              =0

do (a-1).(b-1).(c-1)=0            (cmt)

=>a=b=c=1   

thay vao p

=>p=(1^19-1).(1^5-1).(1^1890-1)

      =(1-1).(1-1).(1-1)

       0

Tớ nhầm a,b,c với x,y,z nhe

thông cảm bệnh nghề nghiệp

p=0 là đúng đấy 

nhớ cho tớ nhé 

hí hí hí hí hí ................