Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=1-2+22-23+....+2100
D=1/5-1/52+1/53+.....+1/5101
E=4/2.5+4/5.8+..........+4/302.305
C=1-2+22-23+....+2100
D=1/5-1/52+1/53+.....+1/5101
E=4/2.5+4/5.8+..........+4/302.305
S= 23/2.5+23/5.8+....................+23/53.56
S=8/2.5+8/5.8+8/8.11+.......+8/53.56
S=8/3.(3/2.5+3/5.8+3/8.11+...........+3/53.56)
S=8/3.(1/2-1/5+1/5-1/8+1/8-...........+1/53-1/56)
S=8/3.(1/2-1/56)
S=8/3.27/56
S=9/7
nhớ t ick cho mình nha
a/ S1 = 2 - 4 + 6 - 8 + . .. + 1998 - 2000
S1 = ( 2 - 4 ) + ( 6 - 8 ) + ... + ( 1998 - 2000 )
S1 = - 2 + ( - 2 ) + ... + ( - 2 ) ( có 500 số - 2 )
S1 = - 2 . 500
S1 = - 1000
b/ S2 = 2 - 4 - 6 + 8 + 10 - 12 - 14 + 16 + .. .+ 1994 - 1996 -1998 + 2000
S2 = ( 2 - 4 - 6 + 8 ) + ( 10 - 12 - 14 + 16 ) + ... + ( 1994 -1996 - 1998 + 2000 )
S2 = 0 + 0 + ... + 0
S2 = 0
\(1+a^2+a^4+a^6+.....+a^{2n}\)
\(\Rightarrow a^2.S1=a^2+a^4+a^6+a^8+.....+a^{2\left(1+n\right)}\)
\(\Rightarrow a^2.S1-S1=\left(a^2+a^4+....+2^{2\left(1+n\right)}\right)-\left(1+a^2+a^4+....+2^{2n}\right)\)
\(\Rightarrow S1\left(a-1\right)\left(a+1\right)=a^{2\left(1+n\right)}-1\)
\(\Rightarrow S1=\frac{a^{2\left(1+n\right)}-1}{\left(a-1\right)\left(a+1\right)}\)
Từ Sn = 1 - 2 +3 - 4 +........+ (-1)n-1n
=>S2000=1-2+3-4+...-2000
S2001=1-2+3-4+...+2001
=>S2000+S2001=2.(1-2+3-4+...-2000)+2001
Dãy từ 1->2000 có 2000-1+1=2000(số hạng)
Có số cặp là:2000:2=1000(cặp)
Giá trị 1 cặp là:1-2=-1
=>S2000+S2001=2.(-1).1000+2001=-2000+2001=1
\(\Rightarrow\left(a-1\right)S_n=\left(a-1\right)\left(a+a^2+a^3+....+a^n\right)\)
\(\Rightarrow\left(a-1\right)S_n=\left(a-1\right)a+\left(a-1\right)a^2+....+\left(a-1\right)a^n\)
\(\Rightarrow\left(a-1\right)S_n=a^2-a+a^3-a^2+....+a^{n+1}-a^n\)
\(\Rightarrow\left(a-1\right)S_n=a^{n+1}-a\)
\(\Rightarrow S_n=\frac{a^{n+1}-a}{a-1}\)
\(\frac{2}{2\cdot5}+\frac{2}{5\cdot8}+...+\frac{2}{302\cdot305}\)
=\(\frac{2}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{302\cdot305}\right)\)
=\(\frac{2}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{302}-\frac{1}{305}\right)\)
=\(\frac{2}{3}\left(\frac{1}{2}-\frac{1}{305}\right)\)
=\(\frac{2}{3}\cdot\frac{303}{610}\)
=\(\frac{101}{305}\)