K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2023

\(sin100=sin\left(90+10\right)=cos10\)

\(sin\left(160\right)=sin\left(180^0-20^0\right)=sin20\)

\(cos170^0=cos\left(180^0-10^0\right)=-cos10^0\)

\(tan103^045'=tan\left(90^0+13^045'\right)=-cot13^045'\)

\(cot124^015'=cot\left(90^0+34^015'\right)=-tan34^015'\)

27 tháng 10 2023

a: loading...

b: \(B=3-sin^290^0+2\cdot cos^260^0-3\cdot tan^245^0\)

\(=3-1+2\cdot\left(\dfrac{1}{2}\right)^2-3\cdot1^2\)

\(=2-3+2\cdot\dfrac{1}{4}=-1+\dfrac{1}{2}=-\dfrac{1}{2}\)

c: \(C=sin^245^0-2\cdot sin^250^0+3\cdot cos^245^0-2\cdot sin^240^0+4\cdot tan55\cdot tan35\)

\(=\left(\dfrac{\sqrt{2}}{2}\right)^2+3\cdot\left(\dfrac{\sqrt{2}}{2}\right)^2-2\cdot\left(sin^250^0+sin^240^0\right)+4\)

\(=\dfrac{1}{2}+3\cdot\dfrac{1}{2}-2+4\)

\(=2-2+4=4\)

27 tháng 10 2023

a:\(a\cdot sin0+b\cdot cos0+c\cdot sin90\)

\(=a\cdot0+b\cdot1+c\cdot1\)

=b+c

b: \(a\cdot cos90+b\cdot sin90+c\cdot sin180\)

\(=a\cdot0+b\cdot1+c\cdot0\)

=b

c: \(a^2\cdot sin90+b^2\cdot cos90+c^2\cdot cos180\)

\(=a^2\cdot1+b^2\cdot0+c^2\left(-1\right)\)

\(=a^2-c^2\)

21 tháng 9 2023

a) \(A=2sin30^o+3cos45^o-sin60^0\)

\(\Leftrightarrow A=2.\dfrac{1}{2}+3.\dfrac{\sqrt[]{2}}{2}-\dfrac{\sqrt[]{3}}{2}\)

\(\Leftrightarrow A=1+\dfrac{3\sqrt[]{2}}{2}-\dfrac{\sqrt[]{3}}{2}\)

\(\Leftrightarrow A=1+\dfrac{\sqrt[]{3}\left(\sqrt[]{6}-1\right)}{2}\)

b) \(B=3cos30^o+3sin45^o-cos45^o\)

\(\Leftrightarrow B=3\dfrac{\sqrt[]{3}}{2}+3\dfrac{\sqrt[]{2}}{2}-\dfrac{\sqrt[]{2}}{2}\)

\(\Leftrightarrow B=\dfrac{3\sqrt[]{3}}{2}+\dfrac{2\sqrt[]{2}}{2}\)

\(\Leftrightarrow B=\dfrac{3\sqrt[]{3}}{2}+\sqrt[]{2}\)

3 tháng 5 2021

b) \(\sin x+\cos x=\dfrac{3}{2}\)

\(\left(\sin x+\cos x\right)^2=\dfrac{1}{4}\)

\(\sin^2x+\cos^2x+2\sin x\cos x=\dfrac{1}{4}\)

\(2\sin x\cos x=-\dfrac{3}{4}=\sin2x\)

3 tháng 5 2021

ý a,

undefined

NV
16 tháng 5 2020

\(A=cos\left(32^0+28^0\right)=cos60^0=\frac{1}{2}\)

\(B=cos\left(220^0+170^0\right)=cos390^0=cos\left(30^0+360^0\right)=cos30^0=\frac{\sqrt{3}}{2}\)

\(C=sin\left(\frac{7\pi}{18}-\frac{5\pi}{9}\right)=sin\left(-\frac{\pi}{6}\right)=-sin\left(\frac{\pi}{6}\right)=-\frac{1}{2}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Từ định lí cosin trong tam giác ABC, ta suy ra: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)

Mà \({\sin ^2}A + {\cos ^2}A = 1\)

\( \Rightarrow \sin A =  \pm \sqrt {1 - {{\cos }^2}A} \)

Do \({0^o} < \widehat A < {180^o}\) nên \(\sin A > 0\) hay \(\sin A = \sqrt {1 - {{\cos }^2}A} \)

Ta có:

\(\begin{array}{l}\sin A = \sqrt {1 - {{\left( {\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}} \right)}^2}}  = \sqrt {1 - \frac{{{{\left( {{b^2} + {c^2} - {a^2}} \right)}^2}}}{{4{b^2}{c^2}}}} \\ = \sqrt {\frac{{4{b^2}{c^2} - {{\left( {{b^2} + {c^2} - {a^2}} \right)}^2}}}{{4{b^2}{c^2}}}}  = \frac{{\sqrt {4{b^2}{c^2} - {{\left( {{b^2} + {c^2} - {a^2}} \right)}^2}} }}{{2bc}}\end{array}\)

Thế vào công thức tính diện tích tam giác ABC ta được:

\(S = \frac{1}{2}bc.\frac{{\sqrt {4{b^2}{c^2} - {{\left( {{b^2} + {c^2} - {a^2}} \right)}^2}} }}{{2bc}} = \frac{1}{4}.\sqrt {4{b^2}{c^2} - {{\left( {{b^2} + {c^2} - {a^2}} \right)}^2}} \)

Chú ý:

Nếu tiếp tục biến đổi công thức diện tích ta được

\(\begin{array}{l}S = \frac{1}{4}.\sqrt {\left( {2bc + {b^2} + {c^2} - {a^2}} \right)\left( {2bc - {b^2} - {c^2} + {a^2}} \right)} \\ = \frac{1}{4}.\sqrt {\left[ {{{\left( {b + c} \right)}^2} - {a^2}} \right]\left[ {{a^2} - {{\left( {b - c} \right)}^2}} \right]} \\ = \frac{1}{4}.\sqrt {\left( {b + c - a} \right)\left( {b + c + a} \right)\left( {a - b + c} \right)\left( {a + b - c} \right)} \end{array}\)

Đến đây, đặt \(p = \frac{{a + b + c}}{2}\), là nửa chu vi tam giác ABC, ta suy ra:

\(\left\{ \begin{array}{l}b + c + a = 2p\\b + c - a = b + c + a - 2a = 2\left( {p - a} \right)\\a - b + c = b + c + a - 2b = 2\left( {p - b} \right)\\a + b - c = b + c + a - 2c = 2\left( {p - c} \right)\end{array} \right.\)

\(\begin{array}{l} \Rightarrow S = \frac{1}{4}\sqrt {2\left( {p - a} \right).2p.2\left( {p - b} \right).2\left( {p - c} \right)} \\ \Leftrightarrow S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \end{array}\)

(công thức Heron)

9 tháng 8 2019

\(A=cos^21+coss^22+...+cos^288+cos^289-\frac{1}{2}\)

\(A=1-sin^21+1-sin^22+...+1-sin^244+cos^245+cos^246+...+cos^289-\frac{1}{2}\)

\(A=1\cdot44+cos^245-\frac{1}{2}\)

\(A=44\)

B=\(sin^21+sin^22+...+sin^289-\frac{1}{2}\)

\(B=1-cos^21+1-cos^22+...+sin^245+sin^246+....+sin^289-\frac{1}{2}\)

\(B=1\cdot44+sin^245-\frac{1}{2}=44\)

9 tháng 8 2019

\(C=tan^21\cdot tan^22\cdot...\cdot tan^288+tan^289\)

\(C=tan^21\cdot\left(tan^22\cdot tan^288\right)\cdot...\cdot\left(tan^244\cdot tan^246\right)\cdot tan^245+tan^289\)

\(C=tan^21+tan^289\approx3282\)

D = \(\left(tan^21:cot^289\right)+...+\left(tan^244:tan^246\right)+tan^245\)

\(D=\left(tan^21\cdot tan^289\right)+...+\left(tan^244\cdot tan^246\right)+tan^245\)

\(D=1+...+1+1\)

ta thấy từ 1 đến 89 có 89 số hạng, trong đó có 44 cặp.

vậy D = 45

18 tháng 12 2022

\(cosa=-\sqrt{1-\dfrac{16}{25}}=-\dfrac{3}{5}\)

\(M=\dfrac{3\cdot\dfrac{4}{5}+2\cdot\dfrac{-3}{5}}{6+16\cdot\left(-\dfrac{3}{5}:\dfrac{4}{5}\right)^2}=\dfrac{\dfrac{6}{5}}{6+16\cdot\dfrac{9}{16}}=\dfrac{\dfrac{6}{5}}{6+9}=\dfrac{6}{5}:15=\dfrac{6}{75}=\dfrac{2}{25}\)

20 tháng 12 2022

cos a ở đâu vậy? 

NV
7 tháng 4 2019

a/

\(tana+tanb=\frac{sina}{cosa}+\frac{sinb}{cosb}=\frac{sinacosb+cosa.sinb}{cosa.cosb}=\frac{sin\left(a+b\right)}{cosa.cosb}\)

\(C=tan80\left(tan20+tan140\right)+tan20.tan120\)

\(C=tan80.\frac{sin160}{cos20.cos140}+\frac{sin20.sin140}{cos20.cos140}\)

\(C=\frac{sin80}{cos80}.\frac{2.sin80.cos80}{\frac{1}{2}\left(cos160+cos120\right)}+\frac{-\frac{1}{2}\left(cos160-cos120\right)}{\frac{1}{2}\left(cos160+cos120\right)}\)

\(C=\frac{4sin^280}{cos160+cos120}-\frac{cos160-cos120}{cos160+cos120}\)

\(C=\frac{2\left(1-cos160\right)-cos160+cos120}{cos160+cos120}=\frac{2+cos120-3cos160}{cos120+cos160}\)

\(C=\frac{2-\frac{1}{2}-3cos160}{-\frac{1}{2}+cos160}=\frac{3-6cos160}{2cos160-1}=-3\)

b/

\(cos^275-sin^275=cos150=-\frac{\sqrt{3}}{2}\)