Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(A=\frac{(2^3+1)(3^3+1)....(1000^3+1)}{(2^3-1)(3^3-1)....(1000^3-1)}=\frac{(2+1)(2^2-2+1)(3+1)(3^2-3+1)....(1000+1)(1000^2-1000+1)}{(2-1)(2^2+2+1)(3-1)(3^2+3+1)...(1000-1)(1000^2+1000+1)}\)
\(=\frac{(2+1)(3+1)...(1000+1)}{(2-1)(3-1)...(1000-1)}.\frac{(2^2-2+1)(3^2-3+1)...(1000^2-1000+1)}{(2^2+2+1)(3^2+3+1)...(1000^2+1000+1)}\)
\(=\frac{1000.1001}{2}.\frac{(2^2-2+1)(3^2-3+1)....(1000^2-1000+1)}{(2^2+2+1)(3^2+3+1)....(1000^2+1000+1)}\)
Ta thấy: \(n^2-n+1=(n^2-2n+1)+n=(n-1)^2+(n-1)+1\)
\(\Rightarrow 3^2-3+1=2^2+2+1\)
\(4^2-4+1=3^2+3+1\)
......
\(1000^2-1000+1=999^2+999+1\)
\(\Rightarrow (3^2-3+1)(4^2-4+1)...(1000^2-1000+1)=(2^2+2+1)(3^2+3+1)...(999^2+999+1)\)
Do đó: \(A=\frac{1000.1001}{2}.\frac{2^2-2+1}{1000^2+1000+1}=\frac{3}{2}.\frac{1000.1001}{1000(1000+1)+1}=\frac{3}{2}.\frac{1000.1001}{1000.1001+1}< \frac{3}{2}\)
a) 1/x(x + 1) + 1/(x + 1)(x + 2) + 1/(x + 2)(x + 3) + 1/(x + 3)(x + 4)
( 1/x - 1/x+1) + (1/x+1 - 1/x+2) + (1/x+2 - 1/ x+3) + 1/(x+3 - 1/x+4)
(1/x +1/x+4) - ( 1/x+2 - 1/x+2) - ( 1/x+3 - 1/x+3)
1/x +1/x+4
2x+4/x(x+4)
b: \(=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right]\cdot\dfrac{x}{x+1}\)
\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{-3x^2-2x+1}{3x}\right)\cdot\dfrac{x}{x+1}\)
\(=\dfrac{2x+2+6x^2+4x-2}{3x\left(x+1\right)}\cdot\dfrac{x}{x+1}\)
\(=\dfrac{6x^2+6x}{3\left(x+1\right)}\cdot\dfrac{1}{x+1}\)
\(=\dfrac{6x\left(x+1\right)}{3\left(x+1\right)^2}=\dfrac{2x}{x+1}\)
c: \(VT=\left[\dfrac{2}{\left(x+1\right)^3}\cdot\dfrac{x+1}{x}+\dfrac{1}{\left(x+1\right)^2}\cdot\dfrac{1+x^2}{x^2}\right]\cdot\dfrac{x^3}{x-1}\)
\(=\left(\dfrac{2}{x\left(x+1\right)^2}+\dfrac{x^2+1}{x^2\cdot\left(x+1\right)^2}\right)\cdot\dfrac{x^3}{x-1}\)
\(=\dfrac{2x+x^2+1}{x^2\cdot\left(x+1\right)^2}\cdot\dfrac{x^3}{x-1}\)
\(=\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2}\cdot\dfrac{x}{x-1}=\dfrac{x}{x-1}\)
b: Đặt \(x^2-6x-2=a\)
Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)
=>(a+2)(a+7)=0
\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)
=>x(x-6)(x-1)(x-5)=0
hay \(x\in\left\{0;1;6;5\right\}\)
c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)
\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)
\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)
\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)
=>26x=-3
hay x=-3/26
1001