K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

4.

\(\dfrac{x+1}{99}+\dfrac{x+3}{97}+\dfrac{x+5}{95}=\dfrac{x+7}{93}+\dfrac{x+9}{91}+\dfrac{x+11}{89}\\ \Rightarrow\left(\dfrac{x+1}{99}+1\right)+\left(\dfrac{x+3}{97}+1\right)+\left(\dfrac{x+5}{95}+1\right)=\left(\dfrac{x+7}{93}+1\right)+\left(\dfrac{x+9}{91}+1\right)+\left(\dfrac{x+11}{89}+1\right)\\ \Rightarrow\dfrac{x+100}{99}+\dfrac{x+100}{97}++\dfrac{x+100}{95}=\dfrac{x+100}{93}+\dfrac{x+100}{91}+\dfrac{x+100}{89}\\ \Rightarrow\left(x+100\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}-\dfrac{1}{93}-\dfrac{1}{91}-\dfrac{1}{89}\right)=0\\ \Leftrightarrow x+100=0\Leftrightarrow x=-100\)

29 tháng 12 2017

\(\text{1) }\dfrac{\left(2x-3\right)\left(2x+3\right)}{8}=\dfrac{\left(x-4\right)^2}{6}+\dfrac{\left(x-2\right)^2}{3}\\ \Leftrightarrow\dfrac{\left(2x-3\right)\left(2x+3\right)}{8}\cdot24=\left[\dfrac{\left(x-4\right)^2}{6}+\dfrac{\left(x-2\right)^2}{3}\right]24\\ \Leftrightarrow3\left(4x^2-9\right)=4\left(x^2-8x+16\right)+8\left(x^2-4x+4\right)\\ \Leftrightarrow12x^2-27=4x^2-32x+64+8x^2-32x+32\\ \Leftrightarrow12x^2-27=12x^2-64x+96\\ \Leftrightarrow12x^2-12x^2+64x=96+27\\ \Leftrightarrow64x=123\\ \Leftrightarrow x=\dfrac{123}{64}\\ \text{Vậy }S=\left\{\dfrac{123}{64}\right\}\\ \)

\(\text{2) }x+2-\dfrac{2x-\dfrac{2x-5}{6}}{15}=\dfrac{7x-\dfrac{x-3}{2}}{5}\\ \Leftrightarrow\left(x+2-\dfrac{2x-\dfrac{2x-5}{6}}{15}\right)15=\dfrac{7x-\dfrac{x-3}{2}}{5}\cdot15\\ \Leftrightarrow15x+30-2x-\dfrac{2x-5}{6}=21x-\dfrac{3x-9}{2}\\ \Leftrightarrow15x-2x-\dfrac{2x-5}{6}-21x+\dfrac{3x-9}{2}=-30\\ \Leftrightarrow-8x-\dfrac{2x-5}{6}+\dfrac{3x-9}{2}=-30\\ \Leftrightarrow\left(-8x-\dfrac{2x-5}{6}+\dfrac{3x-9}{2}\right)6=-30\cdot6\\ \Leftrightarrow-48x-2x+5+9x-27=-180\\ \Leftrightarrow-41x==-158\\ \Leftrightarrow x=\dfrac{158}{41}\\ \text{Vậy }S=\left\{\dfrac{158}{41}\right\}\)

\(\text{3) }1-\dfrac{x-\dfrac{1+x}{3}}{3}=\dfrac{x}{2}-\dfrac{2x-\dfrac{10-7}{3}}{2}\\ \Leftrightarrow\left(1-\dfrac{x-1-x}{3}\right)6=\left(\dfrac{x}{2}-\dfrac{2x-1}{2}\right)6\\ \Leftrightarrow6+2=-3x+3\\ \Leftrightarrow-3x=8-3\\ \Leftrightarrow-3x=5\\ \Leftrightarrow x=-\dfrac{5}{3}\\ \\ \text{Vậy }S=\left\{-\dfrac{5}{3}\right\}\)

20 tháng 7 2018

bai 1

a) \(\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|2,15\right|\)

\(\left|x+\dfrac{4}{15}\right|-3,75=-2,,15\)

\(\left|x+\dfrac{4}{15}\right|=-2,15+3,75=1,6\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{4}{15}=1,6\\x+\dfrac{4}{15}=-1,6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{28}{15}\end{matrix}\right.\)

Vậy ....

b) \(\left|\dfrac{5}{3}x\right|=\left|-\dfrac{1}{6}\right|\)

\(\left|\dfrac{5}{3}x\right|=\dfrac{1}{6}\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{5}{3}x=-\dfrac{1}{6}\\\dfrac{5}{3}x=\dfrac{1}{6}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{10}\\x=\dfrac{1}{10}\end{matrix}\right.\)

c) \(\left|\dfrac{3}{4}x-\dfrac{3}{4}\right|-\dfrac{3}{4}=\left|-\dfrac{3}{4}\right|\)

\(\left|\dfrac{3}{4}x-\dfrac{3}{4}\right|-\dfrac{3}{4}=\dfrac{3}{4}\)

\(\left|\dfrac{3}{4}x-\dfrac{3}{4}\right|=\dfrac{3}{2}\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x-\dfrac{3}{4}=\dfrac{3}{2}\\\dfrac{3}{4}x-\dfrac{3}{4}=-\dfrac{3}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\-1\end{matrix}\right.\)

20 tháng 7 2018

bai 2

a) \(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=\dfrac{1}{4}-\left|y\right|\)

\(\left|\dfrac{1}{6}+x\right|=\dfrac{1}{4}-\left|y\right|\) (*)

với mọi x ta luôn có \(\left|\dfrac{1}{6}+x\right|\ge0\)

\(\Rightarrow\dfrac{1}{4}-\left|y\right|\ge0\)

\(\Rightarrow\left|y\right|\le\dfrac{1}{4}\) \(\Rightarrow\dfrac{1}{4}-\left|y\right|=\left|\dfrac{1}{4}-y\right|\)

Nên từ * \(\Rightarrow\left|\dfrac{1}{6}+x\right|=\left|\dfrac{1}{4}-y\right|\)

\(\Rightarrow\left|\dfrac{1}{6}+x\right|-\left|\dfrac{1}{4}-y\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{6}+x=0\\\dfrac{1}{4}-y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{6}\\y=\dfrac{1}{4}\end{matrix}\right.\)

b) \(\left|x-y\right|+\left|y+25\right|=0\)

với mọi x, y tao luôn có \(\left\{{}\begin{matrix}\left|x-y\right|\ge0\\\left|y+25\right|\ge0\end{matrix}\right.\)

\(\left|x-y\right|+\left|y+25\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|=0\\\left|y+25\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=y\\y=-25\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=-25\\y=-25\end{matrix}\right.\)

13 tháng 2 2018

a:

\(\dfrac{3\left(2x+1\right)}{4}-5-\dfrac{3x+2}{10}=\dfrac{2\left(3x-1\right)}{5}\)

\(\Leftrightarrow\dfrac{15\left(2x+1\right)-100-2\left(3x+2\right)}{20}=\dfrac{8\left(3x-1\right)}{20}\)

\(\Leftrightarrow15\left(2x+1\right)-100-2\left(3x+2\right)=8\left(3x-1\right)\)

\(\Leftrightarrow30x+15-100-6x+4=24x-8\)\(\Leftrightarrow30x-6x-24x=100-4-8\)

\(\Leftrightarrow0x=88\)

Vậy pt vô nghiệm

b:

\(\dfrac{x-15}{23}+\dfrac{x-23}{15}-2=0\)

\(\Leftrightarrow\dfrac{x-15}{23}+\dfrac{x-23}{15}=2\)

\(\Leftrightarrow\dfrac{x-15}{23}-1+\dfrac{x-23}{15}-1=2-2\)

\(\Leftrightarrow\dfrac{x-15-23}{23}+\dfrac{x-23-15}{15}=0\)

\(\Leftrightarrow\dfrac{x-38}{23}+\dfrac{x-23}{15}=0\)

\(\Leftrightarrow\left(x+38\right)\left(\dfrac{1}{23}+\dfrac{1}{15}\right)=0\)

\(\dfrac{1}{23}+\dfrac{1}{15}\ne0\) nên x + 38 =0 \(\Leftrightarrow x=-38\)

Vậy tập nghiện của pt S= {-38}

c:

\(\dfrac{3\left(2x+1\right)}{4}-\dfrac{5x+3}{6}+\dfrac{x+1}{3}=x+\dfrac{7}{12}\)

\(\Leftrightarrow\dfrac{9\left(2x+1\right)-2\left(5x+3\right)+4\left(x+1\right)}{12}=\dfrac{12x+7}{12}\)

\(\Leftrightarrow9\left(2x+1\right)-2\left(5x+3\right)+4\left(x+1\right)=12x+7\)

\(\Leftrightarrow18x+9-10x-6+4x+4=12x+7\)

\(\Leftrightarrow18x-10x+4x-12x=7-9+6-4\)

\(\Leftrightarrow0x=0\)

Vậy pt vô số nghiệm

a: \(\Leftrightarrow\dfrac{5}{2}:\left|\dfrac{3}{4}x+\dfrac{1}{2}\right|=\dfrac{15}{4}-3=\dfrac{3}{4}\)

\(\Leftrightarrow\left|\dfrac{3}{4}x+\dfrac{1}{2}\right|=\dfrac{5}{2}:\dfrac{3}{4}=\dfrac{5}{2}\cdot\dfrac{4}{3}=\dfrac{20}{6}=\dfrac{10}{3}\)

=>3/4x+1/2=10/3 hoặc 3/4x+1/2=-10/3

=>3/4x=17/6 hoặc 3/4x=-23/6

=>x=34/9 hoặc x=-46/9

b: \(\Leftrightarrow\dfrac{9}{4}:\left|x+\dfrac{1}{3}\right|=6.5-2=\dfrac{9}{2}\)

\(\Leftrightarrow\left|x+\dfrac{1}{3}\right|=\dfrac{9}{4}:\dfrac{9}{2}=\dfrac{1}{2}\)

=>x+1/3=1/2 hoặc x+1/3=-1/2

=>x=1/6 hoặc x=-5/6

1 tháng 2 2019

a)MTC 15

\(\dfrac{\left(x-3\right)\times3}{15}=\dfrac{6.15-\left(1-2x\right)\times5}{15}=\dfrac{3x-9}{15}=\dfrac{90-5-10x}{15}=3x-9=90-5-10x\Leftrightarrow3x+10x=90-5+9\)

1 tháng 2 2019

Chưa nghỉ tết à :))

\(a,\dfrac{x-3}{5}=6-\dfrac{1-2x}{3}\)

\(\Rightarrow3\left(x-3\right)=6.15-5\left(1-2x\right)\)

\(\Leftrightarrow3x-9=90-5+10x\)

\(\Leftrightarrow3x-10x=90-5+9\)

\(\Leftrightarrow-7x=94\)

\(\Leftrightarrow x=-\dfrac{94}{7}\)

Vậy.....

\(b,\dfrac{3x-2}{6}-5=\dfrac{3-2\left(x+7\right)}{4}\)

\(\Rightarrow2\left(3x-2\right)-5.12=3\left[3-2\left(x+7\right)\right]\)

\(\Leftrightarrow6x-4-60=-6x-33\)

\(\Leftrightarrow6x+6x=-33+60+4\)

\(\Leftrightarrow12x=31\)

\(\Leftrightarrow x=\dfrac{31}{12}\)

Vậy.....

\(c,2\left(x+\dfrac{3}{5}\right)=5-\left(\dfrac{13}{5}+x\right)\)

\(\Leftrightarrow2x+\dfrac{6}{5}=5-\dfrac{13}{5}-x\)

\(\Leftrightarrow2x+x=5-\dfrac{13}{5}-\dfrac{6}{5}\)

\(\Leftrightarrow3x=\dfrac{6}{5}\)

\(\Leftrightarrow x=\dfrac{2}{5}\)

Vậy.....

\(d,\dfrac{5\left(x-1\right)+2}{6}-\dfrac{7x-1}{4}=\dfrac{2\left(2x+1\right)}{7}-5\)

\(\Rightarrow28\left[5\left(x-1\right)+2\right]-42\left(7x-1\right)=24\left[2\left(2x+1\right)\right]-5.168\)

\(\Leftrightarrow140x-84-294x+42=96x+48-840\)

\(\Leftrightarrow140x-294x-96x=48-840-42+84\)

\(\Leftrightarrow-250x=-750\)

\(\Leftrightarrow x=3\)

Vậy.....

\(e,\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)

\(\Rightarrow6\left(x-1\right)+3\left(x-1\right)=12-4\left[2\left(x-1\right)\right]\)

\(\Leftrightarrow6x-6+3x-3=12-8x+8\)

\(\Leftrightarrow6x+3x+8x=12+8+3+6\)

\(\Leftrightarrow17x=29\)

\(\Leftrightarrow x=\dfrac{29}{17}\)

Vậy.....

\(g,\dfrac{2-x}{2001}-1=\dfrac{1-x}{2002}-\dfrac{x}{2003}\)

\(\Leftrightarrow\dfrac{2}{2001}-\dfrac{x}{2001}-1=\dfrac{1}{2002}-\dfrac{x}{2002}-\dfrac{x}{2003}\)

\(\Leftrightarrow-\dfrac{x}{2001}+\dfrac{x}{2002}+\dfrac{x}{2003}=\dfrac{1}{2002}+1-\dfrac{2}{2001}\)

\(\Leftrightarrow x\left(-\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}\right)=1+\dfrac{1}{2002}-\dfrac{2}{2001}\)

\(\Leftrightarrow x=\dfrac{\left(1+\dfrac{1}{2002}-\dfrac{2}{2001}\right)}{\left(-\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}\right)}=2003\)

Vậy.....

29 tháng 8 2017

A = \(\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(21^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(23^4+4\right)}\)

Xét: n4 + 4 = (n2+2)2 - 4n2 = (n2-2n+2)(n2+2n+2) = [(n-1)2+1][(x+1)2+1] nên: A = \(\dfrac{\left(0^2+1\right)\left(2^2+1\right)}{\left(2^2+1\right)\left(4^2+1\right)}.\dfrac{\left(4^2+1\right)\left(6^2+1\right)}{\left(6^2+1\right)\left(8^2+1\right)}.....\dfrac{\left(20^2+1\right)\left(22^2+1\right)}{\left(22^2+1\right)\left(24^2+1\right)}=\dfrac{1}{24^2+1}=\dfrac{1}{577}\)

B = \(\left(\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{2}{n-2}+\dfrac{1}{n-1}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{n}\right)\)

Đặt C = \(\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{n-\left(n-2\right)}{n-2}+\dfrac{n-\left(n-1\right)}{n-1}\)

= \(\dfrac{n}{1}+\dfrac{n}{2}+...+\dfrac{n}{n-2}+\dfrac{n}{n-1}-1-1-...-1\)

= \(n+\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}-\left(n-1\right)\)

= \(\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}+\dfrac{n}{n}\)

= \(n\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{n}\right)\)

Vậy ...