\(\dfrac{1}{cos\dfrac{\pi}{7}}+\dfrac{1}{cos\dfrac{3\pi}{7}}+\dfrac{1}{cos\dfrac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2021

A\(=\dfrac{cos\dfrac{5\pi}{7}.cos\dfrac{3\pi}{7}+cos\dfrac{5\pi}{7}.cos\dfrac{\pi}{7}+cos\dfrac{3\pi}{7}.cos\dfrac{\pi}{7}}{cos\dfrac{\pi}{7}.cos\dfrac{3\pi}{7}.cos\dfrac{5\pi}{7}}\)

Đặt tử là Y; mẫu là U

Có \(Y=\)\(cos\dfrac{5\pi}{7}.cos\dfrac{3\pi}{7}+\left(cos\dfrac{5\pi}{7}.cos\dfrac{\pi}{7}+cos\dfrac{3\pi}{7}.cos\dfrac{\pi}{7}\right)\)

\(=cos\left(\pi-\dfrac{2\pi}{7}\right).cos\left(\pi-\dfrac{4\pi}{7}\right)+cos\dfrac{\pi}{7}\left(cos\dfrac{5\pi}{7}+cos\dfrac{3\pi}{7}\right)\)

\(=cos\dfrac{2\pi}{7}.cos\dfrac{4\pi}{7}+cos\dfrac{\pi}{7}.2cos\dfrac{4\pi}{7}.cos\dfrac{\pi}{7}\)\(=cos\dfrac{2\pi}{7}.cos\dfrac{4\pi}{7}+2.cos^2\dfrac{\pi}{7}.cos\dfrac{4\pi}{7}\)

\(=cos\dfrac{2\pi}{7}.cos\dfrac{4\pi}{7}+\left(cos\dfrac{2\pi}{7}+1\right).cos\dfrac{4\pi}{7}\)\(=2.cos\dfrac{2\pi}{7}.cos\dfrac{4\pi}{7}+cos\dfrac{4\pi}{7}\)

\(=cos\dfrac{6\pi}{7}+cos\dfrac{2\pi}{7}+cos\dfrac{4\pi}{7}\)

\(\Rightarrow sin\dfrac{\pi}{7}.Y=sin\dfrac{\pi}{7}.cos\dfrac{2\pi}{7}+sin\dfrac{\pi}{7}.cos\dfrac{4\pi}{7}+sin\dfrac{\pi}{7}.cos\dfrac{6\pi}{7}\)

\(=\dfrac{1}{2}\left(-sin\dfrac{\pi}{7}+sin\dfrac{3\pi}{7}\right)+\dfrac{1}{2}\left(-sin\dfrac{3\pi}{7}+sin\dfrac{5\pi}{7}\right)+\dfrac{1}{2}\left(-sin\dfrac{5\pi}{7}+sin\pi\right)\)

\(=\dfrac{1}{2}\left(sin\pi-sin\dfrac{\pi}{7}\right)\)\(=-\dfrac{1}{2}sin\dfrac{\pi}{7}\)

\(\Rightarrow Y=-\dfrac{1}{2}\)

Có \(sin\dfrac{\pi}{7}.U=sin\dfrac{\pi}{7}.cos\dfrac{\pi}{7}.cos\dfrac{3\pi}{5}.cos\dfrac{5\pi}{7}\)

\(=\dfrac{1}{2}.sin\dfrac{2\pi}{7}.cos\left(\pi-\dfrac{2\pi}{7}\right).cos\dfrac{3\pi}{5}\)

\(=-\dfrac{1}{4}.sin\dfrac{4\pi}{7}.cos\left(\pi-\dfrac{4\pi}{5}\right)\)

\(=\dfrac{1}{8}.sin\dfrac{8\pi}{7}\)\(=\dfrac{1}{8}.sin\left(\pi+\dfrac{\pi}{7}\right)=-\dfrac{1}{8}.sin\dfrac{\pi}{7}\)

\(\Rightarrow U=-\dfrac{1}{8}\) 

Vậy \(A=\dfrac{Y}{U}=4\)

27 tháng 5 2021

undefined

CHÚC BẠN HỌC TỐT NHÉok

18 tháng 4 2017

\(\cos\dfrac{\pi}{15}.\cos\dfrac{2\pi}{15}...\cos\dfrac{7\pi}{15}=-\dfrac{1}{2}.\left(\cos\dfrac{\pi}{15}.\cos\dfrac{2\pi}{15}.\cos\dfrac{4\pi}{15}.\cos\dfrac{8\pi}{15}\right).\left(\cos\dfrac{3\pi}{15}.\cos\dfrac{6\pi}{15}\right)\)

\(=-\dfrac{1}{2}.\left(\cos\dfrac{\pi}{15}.\cos\left(2.\dfrac{\pi}{15}\right).\cos\left(2^2.\dfrac{\pi}{15}\right).\cos\left(2^3\dfrac{\pi}{15}\right)\right).\left(\cos\dfrac{3\pi}{15}.\cos\left(2.\dfrac{3\pi}{15}\right)\right)\)

\(=-\dfrac{1}{2}.\left(\dfrac{\sin\left(2^4.\dfrac{\pi}{15}\right)}{16.\sin\left(\dfrac{\pi}{15}\right)}\right).\left(\dfrac{\sin\left(2^2\dfrac{3\pi}{15}\right)}{4.\sin\left(\dfrac{3\pi}{15}\right)}\right)\)

\(=-\dfrac{1}{2}.\left(\dfrac{\sin\left(\dfrac{16\pi}{15}\right)}{16.\sin\left(\dfrac{\pi}{15}\right)}\right).\left(\dfrac{\sin\left(\dfrac{12\pi}{15}\right)}{4.\sin\left(\dfrac{3\pi}{15}\right)}\right)\)

\(=-\dfrac{1}{2}.\left(\dfrac{-\sin\left(\dfrac{\pi}{15}\right)}{16.\sin\left(\dfrac{\pi}{15}\right)}\right).\left(\dfrac{\sin\left(\dfrac{3\pi}{15}\right)}{4.\sin\left(\dfrac{3\pi}{15}\right)}\right)=\dfrac{1}{128}\)

5 tháng 4 2017

a) \(A=sin\left(\dfrac{\pi}{4}+x\right)-cos\left(\dfrac{\pi}{4}-x\right)\)

\(\Leftrightarrow A=sin\dfrac{\pi}{4}.cosx+cos\dfrac{\pi}{4}.sinx-\left(cos\dfrac{\pi}{4}.cosx+sin\dfrac{\pi}{4}.sinx\right)\)

\(\Leftrightarrow A=sin\dfrac{\pi}{4}.cosx+cos\dfrac{\pi}{4}.sinx-cos\dfrac{\pi}{4}.cosx-sin\dfrac{\pi}{4}.sinx\)

\(\Leftrightarrow A=\dfrac{\sqrt{2}}{2}.cosx+\dfrac{\sqrt{2}}{2}.sinx-\dfrac{\sqrt{2}}{2}.cosx-\dfrac{\sqrt{2}}{2}.sinx\)

\(\Leftrightarrow A=0\)

b) \(B=cos\left(\dfrac{\pi}{6}-x\right)-sin\left(\dfrac{\pi}{3}+x\right)\)

\(\Leftrightarrow B=cos\dfrac{\pi}{6}.cosx+sin\dfrac{\pi}{6}.sinx-\left(sin\dfrac{\pi}{3}.cosx+cos\dfrac{\pi}{3}.sinx\right)\)

\(\Leftrightarrow B=cos\dfrac{\pi}{6}.cosx+sin\dfrac{\pi}{6}.sinx-sin\dfrac{\pi}{3}.cosx-cos\dfrac{\pi}{3}.sinx\)

\(\Leftrightarrow B=\dfrac{\sqrt{3}}{2}.cosx+\dfrac{1}{2}.sinx-\dfrac{\sqrt{3}}{2}.cosx-\dfrac{1}{2}.sinx\)

\(\Leftrightarrow B=0\)

c) \(C=sin^2x+cos\left(\dfrac{\pi}{3}-x\right).cos\left(\dfrac{\pi}{3}+x\right)\)

\(\Leftrightarrow C=sin^2x+\left(cos\dfrac{\pi}{3}.cosx+sin\dfrac{\pi}{3}.sinx\right).\left(cos\dfrac{\pi}{3}.cosx-sin\dfrac{\pi}{3}.sinx\right)\)

\(\Leftrightarrow C=sin^2x+\left(\dfrac{1}{2}.cosx+\dfrac{\sqrt{3}}{2}.sinx\right).\left(\dfrac{1}{2}.cosx-\dfrac{\sqrt{3}}{2}.sinx\right)\)

\(\Leftrightarrow C=sin^2x+\dfrac{1}{4}.cos^2x-\dfrac{3}{4}.sin^2x\)

\(\Leftrightarrow C=\dfrac{1}{4}.sin^2x+\dfrac{1}{4}.cos^2x\)

\(\Leftrightarrow C=\dfrac{1}{4}\left(sin^2x+cos^2x\right)\)

\(\Leftrightarrow C=\dfrac{1}{4}\)

d) \(D=\dfrac{1-cos2x+sin2x}{1+cos2x+sin2x}.cotx\)

\(\Leftrightarrow D=\dfrac{1-\left(1-2sin^2x\right)+2sinx.cosx}{1+2cos^2a-1+2sinx.cosx}.cotx\)

\(\Leftrightarrow D=\dfrac{2sin^2x+2sinx.cosx}{2cos^2x+2sinx.cosx}.cotx\)

\(\Leftrightarrow D=\dfrac{2sinx\left(sinx+cosx\right)}{2cosx\left(cosx+sinx\right)}.cotx\)

\(\Leftrightarrow D=\dfrac{sinx}{cosx}.cotx\)

\(\Leftrightarrow D=tanx.cotx\)

\(\Leftrightarrow D=1\)

1 tháng 4 2017

Giải bài 9 trang 161 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 9 trang 161 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 9 trang 161 SGK Đại Số 10 | Giải toán lớp 10

30 tháng 3 2017

a)

\(\cos\dfrac{22\pi}{3}=\cos\left(8\pi-\dfrac{2\pi}{3}\right)\\ =\cos\left(-\dfrac{2\pi}{3}\right)\\ =\cos\left(\dfrac{2\pi}{3}\right)\\ =-\cos\dfrac{\pi}{3}\\ =-\dfrac{1}{2}\)

b)

\(\sin\dfrac{23\pi}{4}=\sin\left(6\pi-\dfrac{\pi}{4}\right)\\ =\sin\left(-\dfrac{\pi}{4}\right)\\ =-\dfrac{\sqrt{2}}{2}\)

c)

\(\sin\dfrac{25\pi}{3}-\tan\dfrac{10\pi}{3}\\ =\sin\left(8\pi+\dfrac{\pi}{3}\right)-\tan\left(3\pi+\dfrac{\pi}{3}\right)\\ =\sin\dfrac{\pi}{3}-\tan\dfrac{\pi}{3}\\ =\dfrac{\sqrt{3}}{2}-\sqrt{3}\\ =\dfrac{-\sqrt{3}}{2}\)

d)

\(\cos^2\dfrac{\pi}{8}-\sin^2\dfrac{\pi}{8}\\ =\cos\dfrac{\pi}{4}\\ =\dfrac{\sqrt{2}}{2}\)

30 tháng 3 2017

cau a: \(cos\dfrac{22\Pi}{3}=cos\dfrac{24\Pi-2\Pi}{3}=cos\left(8\Pi-\dfrac{2\Pi}{3}\right)=cos\dfrac{2\Pi}{3}=-\dfrac{1}{2}\)

câu b: \(sin\dfrac{23\Pi}{4}=sin\dfrac{24\Pi-\Pi}{4}=sin\left(6\Pi-\dfrac{\Pi}{4}\right)=-sin\dfrac{\Pi}{4}=-\dfrac{\sqrt{2}}{2}\)

cau c: \(=sin\left(8\Pi-\dfrac{\Pi}{3}\right)-tan\left(3\Pi+\dfrac{\Pi}{3}\right)=-sin\dfrac{\Pi}{3}-tan\dfrac{\Pi}{3}=-\dfrac{\sqrt{3}}{2}-\sqrt{3}=\dfrac{-3\sqrt{3}}{2}\)

cau d: \(cos^2\dfrac{\Pi}{8}-sin^2\dfrac{\Pi}{8}=cos2\left(\dfrac{\Pi}{8}\right)=cos\dfrac{\Pi}{4}=\dfrac{\sqrt{2}}{2}\)