\(4\left(\cos24^0+\cos48^0-\cos84^0-\cos12^0\right)\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

undefined

30 tháng 3 2017

Làm hay thế :))

30 tháng 3 2017

a)

\(\cos225^0=\cos\left(180^0+45^0\right)=-\cos45^0=-\dfrac{\sqrt{2}}{2}\)

\(\sin240^0=\sin\left(180^0+60^0\right)=-\sin60^0=-\dfrac{\sqrt{3}}{2}\)

\(\cos\left(-15^0\right)=-\cot15^0=-\tan75^0=-\tan\left(30^0+45^0\right)\)

\(=\dfrac{-\tan30^0-\tan45^0}{1-\tan30^0\tan45^0}=\dfrac{-\dfrac{1}{\sqrt{3}}-1}{1-\dfrac{1}{\sqrt{3}}}=-\dfrac{\sqrt{3}+1}{\sqrt{3}-1}\)

\(=-\dfrac{\left(\sqrt{3}+1\right)^2}{2}=-2-\sqrt{3}\)

\(\tan75^0=\cot15^0=2+\sqrt{3}\)

b)

\(\sin\dfrac{7\pi}{12}=\sin\left(\dfrac{\pi}{3}+\dfrac{\pi}{4}\right)=\sin\dfrac{\pi}{3}\cos\dfrac{\pi}{4}+\cos\dfrac{\pi}{3}\sin\dfrac{\pi}{4}\)

\(=\dfrac{\sqrt{2}}{2}\left(\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}\right)=\dfrac{\sqrt{6}+\sqrt{2}}{4}\)

\(\cos\left(-\dfrac{\pi}{12}\right)=\cos\left(\dfrac{\pi}{4}-\dfrac{\pi}{3}\right)=\cos\dfrac{\pi}{4}\cos\dfrac{\pi}{3}+\sin\dfrac{\pi}{3}\sin\dfrac{\pi}{4}\)

\(=\dfrac{\sqrt{2}}{2}\left(\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}\right)=0,9659\dfrac{\sqrt{2}}{2}\left(\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}\right)=0,9659\)

\(\tan\dfrac{13\pi}{12}=\tan\left(\pi+\dfrac{\pi}{12}\right)=\tan\dfrac{\pi}{12}=\tan\left(\dfrac{\pi}{3}-\dfrac{\pi}{4}\right)\)

\(=\dfrac{\tan\dfrac{\pi}{3}-\tan\dfrac{\pi}{4}}{1+\tan\dfrac{\pi}{3}\tan\dfrac{\pi}{4}}=\dfrac{\sqrt{3}-1}{1+\sqrt{3}}=2-\sqrt{3}\)

5 tháng 4 2017

a) \(A=sin\left(\dfrac{\pi}{4}+x\right)-cos\left(\dfrac{\pi}{4}-x\right)\)

\(\Leftrightarrow A=sin\dfrac{\pi}{4}.cosx+cos\dfrac{\pi}{4}.sinx-\left(cos\dfrac{\pi}{4}.cosx+sin\dfrac{\pi}{4}.sinx\right)\)

\(\Leftrightarrow A=sin\dfrac{\pi}{4}.cosx+cos\dfrac{\pi}{4}.sinx-cos\dfrac{\pi}{4}.cosx-sin\dfrac{\pi}{4}.sinx\)

\(\Leftrightarrow A=\dfrac{\sqrt{2}}{2}.cosx+\dfrac{\sqrt{2}}{2}.sinx-\dfrac{\sqrt{2}}{2}.cosx-\dfrac{\sqrt{2}}{2}.sinx\)

\(\Leftrightarrow A=0\)

b) \(B=cos\left(\dfrac{\pi}{6}-x\right)-sin\left(\dfrac{\pi}{3}+x\right)\)

\(\Leftrightarrow B=cos\dfrac{\pi}{6}.cosx+sin\dfrac{\pi}{6}.sinx-\left(sin\dfrac{\pi}{3}.cosx+cos\dfrac{\pi}{3}.sinx\right)\)

\(\Leftrightarrow B=cos\dfrac{\pi}{6}.cosx+sin\dfrac{\pi}{6}.sinx-sin\dfrac{\pi}{3}.cosx-cos\dfrac{\pi}{3}.sinx\)

\(\Leftrightarrow B=\dfrac{\sqrt{3}}{2}.cosx+\dfrac{1}{2}.sinx-\dfrac{\sqrt{3}}{2}.cosx-\dfrac{1}{2}.sinx\)

\(\Leftrightarrow B=0\)

c) \(C=sin^2x+cos\left(\dfrac{\pi}{3}-x\right).cos\left(\dfrac{\pi}{3}+x\right)\)

\(\Leftrightarrow C=sin^2x+\left(cos\dfrac{\pi}{3}.cosx+sin\dfrac{\pi}{3}.sinx\right).\left(cos\dfrac{\pi}{3}.cosx-sin\dfrac{\pi}{3}.sinx\right)\)

\(\Leftrightarrow C=sin^2x+\left(\dfrac{1}{2}.cosx+\dfrac{\sqrt{3}}{2}.sinx\right).\left(\dfrac{1}{2}.cosx-\dfrac{\sqrt{3}}{2}.sinx\right)\)

\(\Leftrightarrow C=sin^2x+\dfrac{1}{4}.cos^2x-\dfrac{3}{4}.sin^2x\)

\(\Leftrightarrow C=\dfrac{1}{4}.sin^2x+\dfrac{1}{4}.cos^2x\)

\(\Leftrightarrow C=\dfrac{1}{4}\left(sin^2x+cos^2x\right)\)

\(\Leftrightarrow C=\dfrac{1}{4}\)

d) \(D=\dfrac{1-cos2x+sin2x}{1+cos2x+sin2x}.cotx\)

\(\Leftrightarrow D=\dfrac{1-\left(1-2sin^2x\right)+2sinx.cosx}{1+2cos^2a-1+2sinx.cosx}.cotx\)

\(\Leftrightarrow D=\dfrac{2sin^2x+2sinx.cosx}{2cos^2x+2sinx.cosx}.cotx\)

\(\Leftrightarrow D=\dfrac{2sinx\left(sinx+cosx\right)}{2cosx\left(cosx+sinx\right)}.cotx\)

\(\Leftrightarrow D=\dfrac{sinx}{cosx}.cotx\)

\(\Leftrightarrow D=tanx.cotx\)

\(\Leftrightarrow D=1\)

26 tháng 4 2017

Giải bài 3 trang 154 SGK Đại Số 10 | Giải toán lớp 10

23 tháng 3 2018

rút gọn biểu thức:

E=cos(\(\dfrac{3\pi}{3}-\alpha\))-sin(\(\dfrac{3\pi}{2}-\alpha\))+sin(\(\alpha+4\pi\))

AH
Akai Haruma
Giáo viên
28 tháng 5 2018

Lời giải:

Do \(0< a< \frac{\pi}{2}\Rightarrow \sin a>0\)

Ta có:

\(\sqrt{\frac{1+\cos a}{1-\cos a}}-\sqrt{\frac{1-\cos a}{1+\cos a}}=\frac{(1+\cos a)-(1-\cos a)}{\sqrt{(1-\cos a)(1+\cos a)}}\)

\(=\frac{2\cos a}{\sqrt{1-\cos ^2a}}=\frac{2\cos a}{\sqrt{\sin ^2a}}=\frac{2\cos a}{\sin a}\)

\(=2.\frac{\cos a}{\sin a}=2\cot a\)

Ta có đpcm.

30 tháng 3 2017

a)

\(\cos\dfrac{22\pi}{3}=\cos\left(8\pi-\dfrac{2\pi}{3}\right)\\ =\cos\left(-\dfrac{2\pi}{3}\right)\\ =\cos\left(\dfrac{2\pi}{3}\right)\\ =-\cos\dfrac{\pi}{3}\\ =-\dfrac{1}{2}\)

b)

\(\sin\dfrac{23\pi}{4}=\sin\left(6\pi-\dfrac{\pi}{4}\right)\\ =\sin\left(-\dfrac{\pi}{4}\right)\\ =-\dfrac{\sqrt{2}}{2}\)

c)

\(\sin\dfrac{25\pi}{3}-\tan\dfrac{10\pi}{3}\\ =\sin\left(8\pi+\dfrac{\pi}{3}\right)-\tan\left(3\pi+\dfrac{\pi}{3}\right)\\ =\sin\dfrac{\pi}{3}-\tan\dfrac{\pi}{3}\\ =\dfrac{\sqrt{3}}{2}-\sqrt{3}\\ =\dfrac{-\sqrt{3}}{2}\)

d)

\(\cos^2\dfrac{\pi}{8}-\sin^2\dfrac{\pi}{8}\\ =\cos\dfrac{\pi}{4}\\ =\dfrac{\sqrt{2}}{2}\)

30 tháng 3 2017

cau a: \(cos\dfrac{22\Pi}{3}=cos\dfrac{24\Pi-2\Pi}{3}=cos\left(8\Pi-\dfrac{2\Pi}{3}\right)=cos\dfrac{2\Pi}{3}=-\dfrac{1}{2}\)

câu b: \(sin\dfrac{23\Pi}{4}=sin\dfrac{24\Pi-\Pi}{4}=sin\left(6\Pi-\dfrac{\Pi}{4}\right)=-sin\dfrac{\Pi}{4}=-\dfrac{\sqrt{2}}{2}\)

cau c: \(=sin\left(8\Pi-\dfrac{\Pi}{3}\right)-tan\left(3\Pi+\dfrac{\Pi}{3}\right)=-sin\dfrac{\Pi}{3}-tan\dfrac{\Pi}{3}=-\dfrac{\sqrt{3}}{2}-\sqrt{3}=\dfrac{-3\sqrt{3}}{2}\)

cau d: \(cos^2\dfrac{\Pi}{8}-sin^2\dfrac{\Pi}{8}=cos2\left(\dfrac{\Pi}{8}\right)=cos\dfrac{\Pi}{4}=\dfrac{\sqrt{2}}{2}\)