Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1) ta có : \(G=cos\left(\alpha-5\pi\right)+sin\left(\dfrac{-3\pi}{2}+\alpha\right)-tan\left(\dfrac{\pi}{2}+\alpha\right).cot\left(\dfrac{3\pi}{2}-\alpha\right)\)
\(G=cos\left(\alpha-\pi\right)+sin\left(\dfrac{\pi}{2}+\alpha\right)-tan\left(\dfrac{\pi}{2}+\alpha\right).cot\left(\dfrac{\pi}{2}-\alpha\right)\)
\(G=cos\left(\pi-\alpha\right)+sin\left(\dfrac{\pi}{2}-\left(-\alpha\right)\right)-tan\left(\pi+\alpha-\dfrac{\pi}{2}\right).cot\left(\dfrac{\pi}{2}-\alpha\right)\) \(G=cos\left(\alpha\right)+cos\left(\alpha\right)+tan\left(\dfrac{\pi}{2}-\alpha\right).cot\left(\dfrac{\pi}{2}-\alpha\right)=2cos\alpha+1\) bài 2) ta có : \(H=cot\left(\alpha\right).cos\left(\alpha+\dfrac{\pi}{2}\right)+cos\left(\alpha\right)-2sin\left(\alpha-\pi\right)\) \(H=cot\left(\alpha\right).cos\left(\dfrac{\pi}{2}-\left(-\alpha\right)\right)+cos\left(\alpha\right)+2sin\left(\pi-\alpha\right)\) \(H=-cot\left(\alpha\right).sin\left(\alpha\right)+cos\left(\alpha\right)+2sin\left(\alpha\right)\) \(H=-cos\alpha+cos\alpha+2sin\alpha=2sin\alpha\)
\(A=cos3a+2cos\left(\pi-3a\right)sin^2\left(\dfrac{\pi}{4}-1,5a\right)\)
\(=cos3a-2cos3a\dfrac{1-cos\left(\dfrac{\pi}{2}-3a\right)}{2}\)
\(=cos3a-cos3a\left(1-sin3a\right)\)
\(=cos3a-cos3a+cos3asin3a=\dfrac{1}{2}sin6a\)
\(=\dfrac{1}{2}sin\left(6\dfrac{5\pi}{6}\right)=\dfrac{1}{2}sin\left(4\pi+\pi\right)=\dfrac{1}{2}sin\pi=0\)
Vì a=\(\dfrac{5\pi}{6}\) nên: \(3a=\dfrac{5\pi}{2}\) => \(\cos3a=0\)
\(\pi-3a=\pi-\dfrac{5\pi}{2}=\dfrac{-3\pi}{2}\)
=> \(\cos\left(\pi-3a\right)=0\)
Ta có \(F=sin^2\dfrac{\pi}{6}+...+sin^2\pi=\left(sin^2\dfrac{\pi}{6}+sin^2\dfrac{5\pi}{6}\right)+\left(sin^2\dfrac{2\pi}{6}+sin^2\dfrac{4\pi}{6}\right)+\left(sin^2\dfrac{3\pi}{6}+sin^2\pi\right)=\left(sin^2\dfrac{\pi}{6}+cos^2\dfrac{\pi}{6}\right)+\left(sin^2\dfrac{2\pi}{6}+cos^2\dfrac{2\pi}{6}\right)+\left(1+0\right)=1+1+1=3\)
\(A=cos\dfrac{\pi}{11}.cos\dfrac{3\pi}{11}.cos\dfrac{5\pi}{11}.cos\left(\pi-\dfrac{4\pi}{11}\right)cos\left(\pi-\dfrac{2\pi}{11}\right)\)
\(=cos\dfrac{\pi}{11}.cos\dfrac{3\pi}{11}cos\dfrac{5\pi}{11}\left(-cos\dfrac{4\pi}{11}\right)\left(-cos\dfrac{2\pi}{11}\right)\)
\(=cos\dfrac{\pi}{11}cos\dfrac{2\pi}{11}cos\dfrac{3\pi}{11}cos\dfrac{4\pi}{11}cos\dfrac{5\pi}{11}\)
\(\Rightarrow2A.sin\dfrac{\pi}{11}=2sin\dfrac{\pi}{11}cos\dfrac{\pi}{11}cos\dfrac{2\pi}{11}cos\dfrac{4\pi}{11}cos\dfrac{3\pi}{11}cos\dfrac{5\pi}{11}\)
\(=sin\dfrac{2\pi}{11}cos\dfrac{2\pi}{11}cos\dfrac{4\pi}{11}cos\dfrac{3\pi}{11}cos\dfrac{5\pi}{11}\)
\(=\dfrac{1}{2}sin\dfrac{4\pi}{11}cos\dfrac{4\pi}{11}cos\dfrac{3\pi}{11}cos\dfrac{5\pi}{11}\)
\(=\dfrac{1}{4}sin\dfrac{8\pi}{11}.cos\dfrac{3\pi}{11}.cos\left(\pi-\dfrac{6\pi}{11}\right)\)
\(=-\dfrac{1}{4}sin\left(\pi-\dfrac{3\pi}{11}\right)cos\dfrac{3\pi}{11}cos\dfrac{6\pi}{11}=-\dfrac{1}{4}sin\dfrac{3\pi}{11}cos\dfrac{3\pi}{11}cos\dfrac{6\pi}{11}\)
\(=-\dfrac{1}{8}sin\dfrac{6\pi}{11}cos\dfrac{6\pi}{11}=-\dfrac{1}{16}sin\dfrac{12\pi}{11}=-\dfrac{1}{16}sin\left(\pi+\dfrac{\pi}{11}\right)\)
\(=\dfrac{1}{16}sin\dfrac{\pi}{11}\)
\(\Rightarrow A=\dfrac{1}{32}\)
a)
\(\cos\dfrac{22\pi}{3}=\cos\left(8\pi-\dfrac{2\pi}{3}\right)\\ =\cos\left(-\dfrac{2\pi}{3}\right)\\ =\cos\left(\dfrac{2\pi}{3}\right)\\ =-\cos\dfrac{\pi}{3}\\ =-\dfrac{1}{2}\)
b)
\(\sin\dfrac{23\pi}{4}=\sin\left(6\pi-\dfrac{\pi}{4}\right)\\ =\sin\left(-\dfrac{\pi}{4}\right)\\ =-\dfrac{\sqrt{2}}{2}\)
c)
\(\sin\dfrac{25\pi}{3}-\tan\dfrac{10\pi}{3}\\ =\sin\left(8\pi+\dfrac{\pi}{3}\right)-\tan\left(3\pi+\dfrac{\pi}{3}\right)\\ =\sin\dfrac{\pi}{3}-\tan\dfrac{\pi}{3}\\ =\dfrac{\sqrt{3}}{2}-\sqrt{3}\\ =\dfrac{-\sqrt{3}}{2}\)
d)
\(\cos^2\dfrac{\pi}{8}-\sin^2\dfrac{\pi}{8}\\ =\cos\dfrac{\pi}{4}\\ =\dfrac{\sqrt{2}}{2}\)
cau a: \(cos\dfrac{22\Pi}{3}=cos\dfrac{24\Pi-2\Pi}{3}=cos\left(8\Pi-\dfrac{2\Pi}{3}\right)=cos\dfrac{2\Pi}{3}=-\dfrac{1}{2}\)
câu b: \(sin\dfrac{23\Pi}{4}=sin\dfrac{24\Pi-\Pi}{4}=sin\left(6\Pi-\dfrac{\Pi}{4}\right)=-sin\dfrac{\Pi}{4}=-\dfrac{\sqrt{2}}{2}\)
cau c: \(=sin\left(8\Pi-\dfrac{\Pi}{3}\right)-tan\left(3\Pi+\dfrac{\Pi}{3}\right)=-sin\dfrac{\Pi}{3}-tan\dfrac{\Pi}{3}=-\dfrac{\sqrt{3}}{2}-\sqrt{3}=\dfrac{-3\sqrt{3}}{2}\)
cau d: \(cos^2\dfrac{\Pi}{8}-sin^2\dfrac{\Pi}{8}=cos2\left(\dfrac{\Pi}{8}\right)=cos\dfrac{\Pi}{4}=\dfrac{\sqrt{2}}{2}\)
đề sai nhỉ? sina/2; cos a/2; tana/2; cota/2 chứ?
ta có:
\(sin^2\dfrac{a}{2}=\dfrac{1-cosa}{2}=\dfrac{1-\dfrac{5}{13}}{2}=\dfrac{4}{13}\)
\(\dfrac{3\pi}{2}< a< 2\pi\Leftrightarrow\dfrac{3\pi}{4}< \dfrac{a}{2}< \pi\)
=> sina/2 > 0 => sina/2 = \(\dfrac{2}{\sqrt{13}}\)
ta có:
\(cos^2\left(\dfrac{a}{2}\right)=1-sin^2\left(\dfrac{a}{2}\right)=1-\dfrac{4}{13}=\dfrac{9}{13}\)
\(\dfrac{3\pi}{2}< a< 2\pi\Leftrightarrow\dfrac{3\pi}{4}< \dfrac{a}{2}< \pi\) (cung2)
=> cosa/2 < 0 => cosa/2 = \(\dfrac{-3}{\sqrt{13}}\)
\(tan\left(\dfrac{a}{2}\right)=\dfrac{sin\left(\dfrac{a}{2}\right)}{cos\left(\dfrac{a}{2}\right)}=\dfrac{\dfrac{2}{\sqrt{13}}}{-\dfrac{3}{\sqrt{13}}}=-\dfrac{2}{3}\)
\(cot\left(\dfrac{a}{2}\right)=\dfrac{1}{tan\left(\dfrac{a}{2}\right)}=\dfrac{1}{-\dfrac{2}{3}}=-\dfrac{3}{2}\)