K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
15 tháng 6 2018
Bài 1a) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2018.2019}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{2018}-\dfrac{1}{2019}\)
\(=1-\dfrac{1}{2019}=\dfrac{2018}{2019}\)
b) \(S=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2017.2019}\)
\(2S=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2017.2019}\)
\(2S=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2017}-\dfrac{1}{2019}\)
\(2S=1-\dfrac{1}{2019}=\dfrac{2018}{2019}\)
\(S=\dfrac{1009}{2019}\)
Còn lại bạn làm tương tự hết nhé .
Giải:
\(S=\dfrac{1}{1.4}-\dfrac{1}{4.7}-\dfrac{1}{7.10}-...-\dfrac{1}{97.100}\)
\(\Leftrightarrow S=-\left(-\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{97.100}\right)\)
\(\Leftrightarrow S=-\dfrac{1}{3}\left(-\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(\Leftrightarrow S=-\dfrac{1}{3}\left(-\dfrac{1}{1}-\dfrac{1}{100}\right)\)
\(\Leftrightarrow S=-\dfrac{1}{3}\left(-\dfrac{101}{100}\right)\)
\(\Leftrightarrow S=\dfrac{101}{300}\)
Vậy ...
Bạn ơi cho mình hỏi tại sao phía trước \(-\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-.....+\dfrac{1}{97}-\dfrac{1}{100}\) lại là \(-\dfrac{1}{3}\)