Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ A = 1002 - 992 + 982 -...+22 - 12
= (1002 - 992) + (982 - 972) +...+ (22 - 12)
= 199 + 195 + 191 + ... + 1
= (\(\frac{199-1}{4}+1\))(\(\frac{199+1}{2}\)) = 5050
b/ Y chang câu a luôn nha
c/ \(C=\frac{780^2-220^2}{125^2+150.125+75^2}=\frac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}\)
\(=\frac{560.1000}{200^2}=14\)
\(B=\frac{780^2-220^2}{125^2+150.125+75^2}\)\(=\frac{\left(780+220\right).\left(780-220\right)}{\left(125+75\right)^2}\)\(=\frac{1000.560}{200^2}\)\(=\frac{560000}{40000}=14\)
\(\left(780^2-220^2\right):\left(125^2+150\cdot125+75^2\right)\)
\(=\dfrac{1000\cdot540}{200^2}\)
\(=\dfrac{10000\cdot54}{40000}=\dfrac{54}{4}=\dfrac{27}{2}\)
A = x 2x2 - 4 và 24và2 tại x = 1.856; y = -0,988
B = ( x 4 - y 4 )(x4-và4) : ( x 2 + y 2 )(x2+và2) tại x = 2003 ; y= 2004
A= chắc sai đề
B=( x 4 - y 4 )(x4-và4) : ( x 2 + y 2 )
=(x^2+y^2).(x^2-y^2)/(x^2+y^2)
=x^2-y^2
=(x-y)(x+y)
thay số =(2003-2004)(2003+2004)=-4007
Ta có:
A=(100^2 -99^2)+(98^2 - 97^2)+(96^2 - 95^2)+.........+(2^2 - 1)
=(100-99)(100+99) + (98-97)(98+97) + (96-95)(96+95)+........+(2-1)(2+1)
=100+99+98+97+......+2+1=5050
Ở đây mình nhóm các hạng tử rồi AD hằng đẳng thức A^2 - B^2 = (A-B)(A+B)
Bạn hãy click vào trong câu hỏi tương tự nhé !
a) 1272 + 146.127 + 732
= 1272 + 2.73.127 + 732
= (127 + 73)2 = 2002 = 40000
b) 98 . 28 - (184 - 1)(184 + 1)
= (9.2)8 - 188 + 1
= 188 - 188 + 1 = 1
c) \(\frac{780^2-220^2}{125^2+150.125+75^2}=\frac{\left(780-220\right)\left(780+220\right)}{125^2+2.75.125+75^2}=\frac{560.1000}{\left(125+75\right)^2}=\frac{560000}{200^2}\)
\(=\frac{560000}{40000}=14\)
a) 1272 + 146.127 + 732
= 1272 + 2.73.127 + 732
= ( 127 + 73 )2
= 2002 = 40 000
b) 98.28 - ( 184 - 1 )( 184 + 1 )
= ( 9.2 )8 - [ ( 184 )2 - 12 ]
= 188 - 188 + 1
= 1
c) \(\frac{780^2-220^2}{125^2+150\cdot125+75^2}\)
\(=\frac{\left(780-220\right)\left(780+220\right)}{125^2+2\cdot75\cdot125+75^2}\)
\(=\frac{560\cdot1000}{\left(125+75\right)^2}\)
\(=\frac{560000}{200^2}\)
\(=\frac{560000}{40000}=14\)
\(P=100^2-99^2+98^2-97^2+96^2-95^2+...+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=100+99+98+97+...+2+1\)
\(=\frac{\left(100+1\right)\cdot100}{2}=5050\)
\(A=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=100+99+98+97+...+2+1\)
\(=\left(100+1\right).\frac{100-1}{2}=\frac{101.99}{2}=\frac{9999}{2}\)