K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

\(A=\left(1^2-2^2\right)+\left(3^2-4^2\right)+...+\left(99^2-100^2\right)+101^2\)\(=-\left(3+7+...+199\right)+101^2=-\frac{\left(3+199\right).50}{2}+101^2=5151\)

AH
Akai Haruma
Giáo viên
22 tháng 11 2017

Lời giải:

Ta có:

\(A=1^2-2^2+3^2-4^2+....+99^2-100^2+101^2\)

\(\Leftrightarrow A=(1^2-2^2)+(3^2-4^2)+....+(99^2-100^2)+101^2\)

\(\Leftrightarrow A=(-1)(1+2)+(-1)(3+4)+....+(-1)(99+100)+101^2\)

\(\Leftrightarrow A=-(1+2+.....+99+100)+101^2\)

\(\Leftrightarrow A=-\frac{100(100+1)}{2}+101^2=101^2-50.101=101.51=5151\)

Vậy \(A=5151\)

11 tháng 10 2017

\(1^2-2^2+3^2-4^2+.................+99^2-100^2+101^2\)

\(=\left(-3\right)+\left(-7\right)+\left(-11\right)+........+\left(-199\right)+10201\)

\(=\frac{50.\left[\left(-199\right)+\left(-3\right)\right]}{2}+10201\)

\(=\left(-5050\right)+10201\)

\(=5151\)

\(1^2-2^2+3^2-4^2+...+99^2-100^2+101^2\)

\(=\left(-3\right)+\left(-7\right)+\left(-11\right)+...+-199+101^2\)

\(=\frac{50\left(-199+\left(-3\right)\right)}{2}+10201\)

\(=-5050+10201\)

\(=5151\)

8 tháng 12 2017

\(1^2-2^2+3^2-4^2+...-100^2+101^2\)

\(\left(1-2\right).\left(1+2\right)+\left(3-4\right)\left(3+4\right)\)\(+...+\left(99-100\right).\left(99+100\right)+101^2\)

\(-3-7-11-...-199+101^2\)

\(101^2-\left(3+7+11+...+199\right)\)

Ta de thay :(3+7+11+ . . .+199) la 1 cap so cong co d=4 ,n=50

\(101^2-\left(199+3\right)\cdot50:2\)

\(=5151\)

28 tháng 4 2020

\(A\)=   12 - 22 + 32 - 42 + ... + 992 -  1002  + 1012

\(\Leftrightarrow A\)\(\left(1.1-2.2\right)\) \(+\)\(\left(3.3-4.4\right)\)\(+\)\(\left(5.5-6.6\right)\)\(+\)\(...\)\(+\)\(\left(99.99-100.100\right)\)\(+\)\(101.101\)

\(\Leftrightarrow A\)\(\left(-3\right)\)\(+\)\(\left(-7\right)\)\(+\)\(\left(-11\right)\)\(+\)\(...\)\(+\)\(\left(-199\right)\)\(+\)\(10201\).Tìm số hạng của tổng.Mình tìm được 50

\(\Leftrightarrow\)\(\left(-5050\right)\)+\(10201\)=\(5151\)

chúc bạn học tốt

28 tháng 4 2020

cảm ơn bạn

19 tháng 8 2020

a) Ta có:

\(A\left(x\right)=x^3-30x^2-31x+1\)

\(A\left(x\right)=x^3-31x^2+x^2-31x+1\)

\(A\left(x\right)=\left(x^3-31x^2\right)+\left(x^2-31x\right)+1\)

\(A\left(x\right)=x^2.\left(x-31\right)+x.\left(x-31\right)+1\)

\(A\left(x\right)=\left(x-31\right).\left(x^2+x\right)+1\)

+ Thay \(x=31\) vào biểu thức \(A\left(x\right)\) ta được:

\(A\left(x\right)=\left(31-31\right).\left(31^2+31\right)+1\)

\(A\left(x\right)=0.992+1\)

\(A\left(x\right)=0+1\)

\(A\left(x\right)=1.\)

Vậy giá trị của biểu thức \(A\left(x\right)\)\(1\) tại \(x=31.\)

12 tháng 12 2018

a)=>(x^2 + 2xy +y^2)-1 / (x^2 +2x+1)-y^2

=>(x+y)^2 - 1^2 / (x+1)^2 - y^2

=>(x+y-1)*(x+y+1) / (x+1-y)*(x+1+y)

=>(x+y-1) / (x+1-y) => (99+50-1) / (99+1-50)=2,96

b)Câu này tính nhanh tớ ko bít,nếu thi phải cậu tính nhanh ko được,cứ tính bình thường trong máy tính(thay số vào) ,vẫn sẽ được điểm.

(THÔNG CẢM VÌ TỚ KO BÍT VIẾT MÃ LATEX)

(CHÚC CẬU MAY MẮN )ok

16 tháng 8 2020

Bài 11:

1) Sửa lại đề là: \(A=127^2+146.127+73^2\)

\(\Rightarrow A=127^2+2.127.73+73^2\)

\(\Rightarrow A=\left(127+73\right)^2\)

\(\Rightarrow A=200^2\)

\(\Rightarrow A=40000\)

Vậy \(A=40000.\)

2) Sửa lại đề là: \(B=9^8.2^8-\left(18^4-1\right).\left(18^4+1\right)\)

\(\Rightarrow B=\left(9.2\right)^8-\left[\left(18^4\right)^2-1^2\right]\)

\(\Rightarrow B=18^8-\left(18^8-1\right)\)

\(\Rightarrow B=18^8-18^8+1\)

\(\Rightarrow B=0+1\)

\(\Rightarrow B=1\)

Vậy \(B=1.\)

16 tháng 8 2020

4) \(D=\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)

\(\Rightarrow2D=\left(3-1\right).\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(=3^{32}-1\)

\(\Rightarrow D=\frac{3^{32}-1}{2}\)

21 tháng 10 2016

A = 1002 - 992 + 982 - 972 + . . . + 22 - 12

= (100 - 99)(100 + 99) + (98 - 97)(98 + 97) + . . . (2 - 1)(2 + 1)

= 199 + 195 + . . . + 3

= 5050

B = 3(22 + 1)(24 + 1) . . . (264 + 1) + 1

= (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1)(264 + 1)(264 + 1) + 1

= (24 - 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1)(264 + 1) + 1

= (28 - 1)(28 + 1)(216 + 1)(232 + 1)(264 + 1) + 1

= (216 - 1)(216 + 1)(232 + 1)(264 + 1) + 1

= (232 - 1)(232 + 1)(264 + 1) + 1

= (264 - 1)(264 + 1) + 1

= 2128 - 1 + 1

= 2128

22 tháng 10 2016

Câu C mk chép nhầm đề đó

21 tháng 6 2019

#)Giải :

B = 2100 - 299 + 298 - 297 + ... + 22 - 2 

=>2B = 2101 - 2100 + 299 - 298 + ... + 23 - 22

=>2B + B = ( 2101 - 2100 + 299 - 298 + ... + 23 - 22 ) + ( 2100 - 299 + 298 - 297 + ... + 22 - 2 )

=>3B = 2201 - 2

=>B = 2201 - 2 / 3

21 tháng 6 2019

\(B=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

\(2B=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

\(\Rightarrow2B+B=2^{101}-2^2\)

\(\Rightarrow3B=2^{101}-2^2\)

\(\Rightarrow B=\frac{2^{101}-2^2}{3}\)