Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3x - 1)^2016 + (5y - 3)^2016 < 0 (1)
có (3x - 1)^2016 > 0
(5y - 3)^2018 > 0
=> (3x-1)^2016 + (5y - 3)^2018 > 0 và (1)
=> (3x - 1)^2016 + (5y - 3)^2016 = 0
=> 3x - 1 = 0 và 5y - 3 = 0
=> x = 1/23 và y = 3/5
a)Đang suy nghĩ...
b)\(M\left(x\right)=\left(x^2-3x\right)+\left(x-3\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
a) \(12x^{11}-15x^7-6x^5+2018\)
\(=3x^5.\left(4x^6-5x^2-2\right)+2018\)
\(=3x^5.0+2018\)
\(=2018\)
2x−3y/5=5y−2z/3=3z−5x/2=10x-15y/25=15y-6z/9=6z-10x/4=...+..+..../25+9+4=0/31=0
=> 2x=3y; 5y=2z ; 3z=5x => x/3=y/2; y/2=z/5
=> x/3=y/2 =z/5 = 12x/36=5y/10=3z/15= (12x+5y-3z)/31
x/3 = 3y/6=2z/10 = (x-3y+2z)/7
=> (12x+5y-3z)/ (x-3y+2z)=31/7
Vì |2x-y| \(\ge0\)\(\forall x,y\)
\(\left(y+2\right)^{2018}\ge0\forall y\)
\(\Rightarrow\left|2x-y\right|+\left(y+2\right)^{2018}\ge0\)
Dấu = xảy ra
\(\Leftrightarrow\hept{\begin{cases}2x-y=0\\y+2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)(Thay vào C ta đc )
\(C=2\cdot\left(-1\right)^{2019}-5\left(-2\right)^3+2019\)=2057
Vậy .......
Vì /2x-y/ \(\ge\)0 với mọi x,y,
(y + 2)2018\(\ge\)0 với mọi y
suy ra \(|2x-y|\)+ (y + 2)2018\(\ge\)0 với mọi x,y (1)
mà suy ra \(|2x-y|\)+ (y + 2)2018 =0 (2)
Từ (1) và (2) suy ra \(|2x-y|\)=0 và (y + 2)2018 = 0
suy ra 2x=y và y=-2
suy ra x=-1 và y=-2
Như vậy C= 2. ( -1)2019 - 5 (-2) 3 + 2019 = -2 +40 + 2019 = 2057
\(Vi:\hept{\begin{cases}\left(3x-1\right)^{2016}\ge0\\\left(5y-3\right)^{2018}\ge0\end{cases}}ma:\left(3x-1\right)^{2016}+\left(5y-3\right)^{2018}\le0\Rightarrow\hept{\begin{cases}5y-3=0\\3x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=\frac{5}{3}\\x=\frac{1}{3}\end{cases}}.\)
\(\Rightarrow M=5^5+\frac{35}{9}\)