K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

Vì |2x-y| \(\ge0\)\(\forall x,y\)

\(\left(y+2\right)^{2018}\ge0\forall y\)

\(\Rightarrow\left|2x-y\right|+\left(y+2\right)^{2018}\ge0\)

Dấu = xảy ra

\(\Leftrightarrow\hept{\begin{cases}2x-y=0\\y+2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)(Thay vào C ta đc )

\(C=2\cdot\left(-1\right)^{2019}-5\left(-2\right)^3+2019\)=2057

Vậy .......

1 tháng 3 2020

Vì /2x-y/ \(\ge\)0 với mọi x,y,

(y + 2)2018\(\ge\)0 với mọi y

suy ra \(|2x-y|\)+ (y + 2)2018\(\ge\)0 với mọi x,y   (1)

mà suy ra \(|2x-y|\)+ (y + 2)2018​ =0    (2)

Từ (1) và (2) suy ra \(|2x-y|\)=0 và (y + 2)2018​ = 0

suy ra 2x=y và y=-2

suy ra x=-1 và y=-2

Như vậy C= 2. ( -1)2019 - 5 (-2) 3 + 2019 = -2 +40 + 2019 = 2057

 
23 tháng 12 2016

Ta có:

\(\left|x-1\right|+\left(y+2\right)^{20}=0\)

\(\Rightarrow\left|x-1\right|=0\)\(\left(y+2\right)^{20}=0\)

+) \(\left|x-1\right|=0\Rightarrow x-1=0\Rightarrow x=1\)

+) \(\left(y+2\right)^{20}=0\Rightarrow y+2=0\Rightarrow y=-2\)

\(\Rightarrow C=2x^5-5y^3+2015\)

\(=2.1^5-5.\left(-2\right)^3+2015\)

\(=2-\left(-40\right)+2015\)

\(=2057\)

Vậy C = 2057

23 tháng 12 2016

Cảm ơn bạn nhiều lắm vui

16 tháng 10 2019

ta có x2+2y+1+y2+2z+1+z2+2x+1=0

=>(x2+2x+1)+(y2+2y+1)+(z2+2z+1)=0

=>(x+1)2+(y+1)2+(z+1)2=0

Vì (x+1)2> hoặc = 0

.......

=> x=-1,y=-1,z=-1

sau đó thay vào nha

9 tháng 6 2021

Ta có: \(\left(x-1\right)^{20}\ge0\forall x\)

           \(\left(y+2\right)^{30}\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^{20}+\left(y+2\right)^{30}\ge0\)

Mà \(\left(x-1\right)^{20}+\left(y+2\right)^{30}=0\)

\(\Rightarrow\left(x-1\right)^{20}=\left(y+2\right)^{30}=0\)

\(\Rightarrow x-1=y+2=0\)

\(\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay x = 1 và y = -2 vào biểu thức A ta được:

\(A=2.1^5-5.\left(-2\right)^3+4=-76\)

Vậy A = -76 tại x = 1 và y = -2.

9 tháng 6 2021

Ta có : \(\hept{\begin{cases}\left(x-1\right)^{20}\ge0\forall x\\\left(y+2\right)^{30}\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^{20}+\left(y+2\right)^{30}\ge0\forall x;y\)

Dựa vào đề bài ta có \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Khi đó A = 2.15 - 5.(-2)3 + 4 = 2 + 40 + 4 = 46

18 tháng 12 2020

Ta có : x3 + y3 = z(3xy - z2)

=> x3 + y3 = 3xyz - z3

=> x3 + y3 + z3 - 3xyz = 0

=> (x + y)(x2 - xy + y2) + z3 - 3xyz = 0

=> (x + y)3 - 3xy(x + y) + z3 - 3xyz = 0

=> [(x + y)3 + z3] - 3xy(x + y) - 3xyz  = 0

=> (x + y + z)[(x + y)2 - (x + y)z + z2] - 3xy(x + y + z) = 0

=> (x + y +z)(x2 + y 2 + 2xy - xz - yz + z2) - 3xy(x + y + z) = 0

=> (x + y + z)(x2 + y2 + z2 - xy - yz - zx) = 0

=> x2 + y2 + z2 - xy - yz - zx = 0 (Vì x + y + z = 3)

=> 2(x2 + y2 + z2 - xy - yz - zx) = 0

=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2zx = 0

=> (x2 - 2xy + y2) + (y2 - 2yz + z2) + (x2 - 2zx + z2) = 0

=> (x - y)2 + (y - z)2 + (x - z)2 = 0

=> \(\hept{\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}}\Rightarrow x=y=z\)

mà x + y + z = 3

=> x = y = z = 1

Khi đó A = 673(x2019 + y2019 + z2019) + 1 

= 673(12019 + 12019 + 12019) + 1

= 673.3 + 1 = 2020

Vậy A = 2020

10 tháng 2 2020

\(C=2\left(x-y\right)+13x^3y^2\left(x-y\right)+15xy\left(y-x\right)+1=0+0+0+1=1\)

27 tháng 11 2018

|x-1| +(y+2)^20=0

|x-1| \(\ge0\)

(y+2)^20 \(\ge\)0

=> |x-1| +(y+2)^20\(\ge\) 0

"=" xảy ra khi x=1 y=-2

Với x=1 y=-2 thay vào tính C