Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S.2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(S.2=\frac{1}{1}-\frac{1}{11}\)
\(S.2=\frac{10}{11}\)
\(S=\frac{10}{11}:2\)
\(S=\frac{5}{11}\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{9.11}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{11}\right)\)
\(=\frac{1}{2}.\frac{10}{11}\)
\(=\frac{5}{11}\)
\(=\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+....+\frac{2}{9\times11}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{11}\right)\)
\(=\frac{1}{2}\times\frac{10}{11}\)
\(=\frac{5}{11}\)
\(\frac{1}{5.7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+...+\frac{1}{2009\cdot2011}+\frac{1}{x}=\frac{1}{5}\cdot0,5\)
\(=\frac{7-5}{5\cdot7}+\frac{9-7}{7\cdot9}+\frac{11-9}{9\cdot11}+...+\frac{2011-2009}{2009\cdot2011}+\frac{1}{x}=\frac{1}{10}\)
\(=\left[\frac{1}{2}\cdot\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{2009}-\frac{1}{2011}\right)\right]+\frac{1}{x}=\frac{1}{10}\)
\(=\left[\frac{1}{2}\cdot\left(\frac{1}{5}-\frac{1}{2011}\right)\right]+\frac{1}{x}=\frac{1}{10}\)
\(=\left(\frac{1}{2}\cdot\frac{2006}{10055}\right)+\frac{1}{x}=\frac{1}{10}\)
\(=\frac{1003}{10055}+\frac{1}{x}=\frac{1}{10}\)
\(\Rightarrow\frac{1}{x}=\frac{1}{10}-\frac{1003}{10055}\)
\(\frac{1}{x}=\frac{1}{4022}\)
\(\Rightarrow x=1\div\frac{1}{4022}=4022\)
\(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)
\(=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{13}-\frac{1}{15}\)
\(=\frac{1}{5}-\frac{1}{15}=\frac{3}{15}-\frac{1}{15}=\frac{3-1}{15}=\frac{2}{15}\)
P/s : Dấu chấm là nhân nhé!
\(\frac{3}{5×3}+\frac{3}{5×7}+\frac{3}{7×9}+\frac{3}{9×11}+\frac{3}{11×13}\)
\(=\frac{3}{2}×\left(\frac{2}{3×5}+\frac{2}{5×7}+\frac{2}{7×9}+\frac{2}{9×11}+\frac{2}{11×13}\right)\)
\(=\frac{3}{2}×\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{3}{2}×\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=\frac{3}{2}×\left(\frac{13}{39}-\frac{3}{39}\right)\)
\(=\frac{3}{2}×\frac{10}{39}\)
\(=\frac{5}{13}\)
\(\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}+\frac{3}{11.13}\)
\(=\frac{3}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{ 1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11} +\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=\frac{3}{2}.\frac{10}{39}\)
\(=\frac{15}{39}\)
\(=\frac{7-5}{5x7}+\frac{9-7}{7x9}+\frac{11-9}{9x11}+...+\frac{15-13}{13x15}=\)
\(=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{13}-\frac{1}{15}=\frac{1}{5}-\frac{1}{15}=\frac{2}{15}\)
\(\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}+\frac{2}{13\cdot15}\)
\(=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+....-\frac{1}{15}\)
\(=\frac{1}{5}-\frac{1}{15}=\frac{2}{15}\)
\(.A=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{2013}\right)\)
\(A=\frac{1004}{10065}\)
<a class="ptip tipped" data-name="Nguyễn Ngọc Sáng" data-image="http://olm.vn/images/avt/avt424601_60by60.jpg" href="/thanhvien/nguyenngocsang6a" data-uid="125744" data-hasqtip="true" aria-describedby="qtip-2"> Sáng Nguyễn </a>
A=1/5x7+11/7x9+1/9x11+....+1/2011x2013
2xA=2x(1/5x7+1/7x9+1/9x11+...+1/2011x2013
2xA=2/5x7+2/7x9+2/9x11+...+2/2011x2013
2xA=1/5-1/7+1/7-1/9+1/9-1/11+...+1/2011-1/2013
2xA=1/5-1/2013
2xA=2013/10045-5/10045
2xA=2008/10045
A=2008/10045:2
A=2008/10045x1/2
A=1004/10045