Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a < b, a + b = 7, a . b = 12 nên a = 3 , b = 4
Khi đó : \(\left(a-b\right)^{2009}=\left(3-4\right)^{2009}=-1\)
Ta có x3 + y3
= (x + y)(x2 - xy + y2)
= (x + y)(x2 + 2xy + y2) - 3xy(x + y)
= (x + y)3 - 6xy
= 23 - 6xy
= 8 - 6xy
Lại có x + y = 2
=> (x + y)2 = 4
=> x2 + y2 + 2xy = 4
=> 2xy = -6
=> xy = -3
Khi đó x3 - y3 = 8 + 6.3 = 26
b) a + b = 7
=> a = 7 - b
Khi đó ab = 12
<=> (7 - b).b = 12
=> 7b - b2 = 12
=> 7b - b2 - 12 = 0
=> -(b2 - 7b + 12) = 0
=> b2 - 4b - 3b + 12 = 0
=> b(b - 4) - 3(b - 4) = 0
=> (b - 3)(b - 4) = 0
=> \(\orbr{\begin{cases}b=3\\b=4\end{cases}}\)
Khi b = 3 => a = 4
Khi b = 4 => a = 3
+) b = 3 ; a = 4 => B = (3 - 4)2009 = -1
+) b = 4 ; a = 3 => B = (4 - 3)2009 = 1
c) Ta có a3 - b3 = (a - b)(a2 + ab + b2)
= (a - b)(a2 - 2ab + b2) + 3ab(a - b)
= (a - b)3 + 3ab(a - b)
= 27 + 9ab
Lại có \(\hept{\begin{cases}a+b=9\\a-b=3\end{cases}}\Rightarrow\hept{\begin{cases}a=6\\b=3\end{cases}}\)
Khi đó C = 27 + 9.6.3 = 27 + 162 = 189
a) Ta dùng hằng đẳng thức: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\) (1)
Thay a+b=7 và ab=12 vào (1) ta được:
\(\left(a-b\right)^2=7^2-4.12=49-48=1\)
Vậy:.....
b) Ta dùng hằng đẳng thức: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\) (2)
Thay a-b=6 và ab = 3 vào (2) ta được:
\(\left(a+b\right)^2=6^2+4.3=36+12=48\)
Vậy:....
c) Dùng hằng đẳng thức: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\) (3)
Thay ab = 6 và a+b = -5 vào (3) ta được:
\(a^3+b^3=\left(-5\right)^3-3.6\left(-5\right)=-125-90=-215\)
Vậy......
Ta có\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
\(=49-48\)
\(=1\)
Mà \(a>b\Rightarrow a-b>0\)
\(\Rightarrow a-b=1\)
\(\Rightarrow\left(a-b\right)^{2009}=1\)
Bạn ơi cho mình hỏi tại sao (a-b)^2 lại bằng (a+b)^2-4ab vậy