Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có (a+b)2=a2+2ab+b2=a2+b2+2.6=a2+b2+12(1)
mà a+b=5 nên (a+b)2=25
từ(1) suy ra a2+b2=25-12=13
b) ta có (x+y)3=x3+y3+3xy(x+y)
suy ra x3+y3=(x+y)3-3xy(x+y)=125-90=35
a)
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)-3abc+c^3\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[a^2+b^2+c^2-ab-bc-ca\right]\)
\(=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
b/
\(a+b+c=0\Rightarrow c=-\left(a+b\right)\Rightarrow c^2=\left(a+b\right)^2\)
\(\Leftrightarrow c^2=a^2+b^2+2ab\)\(\Leftrightarrow a^2+b^2+ab=c^2-ab\)
\(2x^4=\left(a^2+b^2+ab\right)^2+\left(c^2-ab\right)^2\)
\(=a^4+b^4+a^2b^2+2a^2b^2+2a^3b+2ab^3+c^4-2abc^2+a^2b^2\)
\(=a^4+b^4+c^4+\left(4a^2b^2+2a^3b+2ab^3-2abc^2\right)\)
\(=a^4+b^4+c^4+2ab\left(2ab+a^2+b^2-c^2\right)\)
\(=a^4+b^4+c^4+0\)
\(=a^4+b^4+c^4\)
A = a2 + b2 = a2 + 2ab + b2 - 2ab = ( a + b )2 - 2ab = 52 - 2.6 = 25 - 12 = 13
B = a3 + b3 = a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2 = ( a + b )3 - 3ab( a + b ) = 53 - 3.6.5 = 125 - 90 = 35
C = a4 + b4 = a4 + 2a2b2 + b4 - 2a2b2 = ( a2 + b2 )2 - 2a2b2 = [ ( a + b )2 - 2ab ]2 - 2( ab )2
= ( 52 - 2.6 )2 - 2.62
= ( 25 - 12 )2 - 2.36
= 132 - 72
= 169 - 72 = 97
4a) \(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+b^2+2ab\)
=> (a+b)^2=(a-b)^2+4ab
- 2x – x2 + 2 – x – (3x2 + 6x + 5x +10) = – 4x2 + 2
- 2x – x2 + 2 – x – 3x2 – 6x – 5x – 10 = – 4x2 + 2 –10x = 10 x = – 1
- 2x2 – 6x + x – 3 = 0
(x – 3)(2x + 1) = 0
x = 3 hay x = -1/2
1. Ta có: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
Theo đề ta có: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab=5^2-4.2=17\)
Vậy \(\left(a-b\right)^2=17\)
2. Ta có: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
Theo đề ta có: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab=6^2+4.16=100\)
\(\Rightarrow\left[{}\begin{matrix}a+b=10\\a+b=-10\end{matrix}\right.\)
Vậy \(a+b=10\) hoặc \(a+b=-10\)
3. \(a^2+b^2+1=ab+a+b\)
\(\Rightarrow2\left(a^2+b^2+1\right)=2\left(ab+a+b\right)\)
\(\Rightarrow2a^2+2b^2+2=2ab+2a+2b\)
\(\Rightarrow2a^2+2b^2+2-2ab-2a-2b=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\) (1)
Vì \(\left(a-b\right)^2\ge0\) \(\forall a;b\)
\(\left(a-1\right)^2\ge0\) \(\forall a\)
\(\left(b-1\right)^2\ge0\) \(\forall b\)
\(\Rightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) \(\forall a;b\) (2)
Từ (1)(2) \(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-1\right)^2=0\\\left(b-1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-1=0\\b-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=b\\a=1\\b=1\end{matrix}\right.\Rightarrow a=b=1\)
Vậy.... đpcm
Chúc bạn học tốt ahihi
Bài 1 : \(a+b=5\)
\(\Leftrightarrow\left(a+b\right)^2=25\)
\(\Leftrightarrow a^2+b^2+2ab=25\)
\(\Leftrightarrow a^2+b^2+2.2=25\)
\(\Leftrightarrow a^2+b^2=21\)
\(\Leftrightarrow a^2+b^2-2ab=21-2ab\)
\(\Leftrightarrow\left(a-b\right)^2=21-2.2\)
\(\Leftrightarrow\left(a-b\right)^2=17\)
Bài 2 :
\(a-b=6\)
\(\Leftrightarrow\left(a-b\right)^2=36\)
\(\Leftrightarrow a^2-2ab+b^2=36\)
\(\Leftrightarrow a^2+b^2-2.16=36\)
\(\Leftrightarrow a^2+b^2=36+32=68\)
\(\Leftrightarrow a^2+b^2+2ab=68+2ab\)
\(\Leftrightarrow\left(a+b\right)^2=68+2.16=100\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=10\\a+b=-10\end{matrix}\right.\)
Bài 3 :
\(a^2+b^2+1=ab+a+b\)
\(\Leftrightarrow2\left(a^2+b^2+1\right)=2\left(ab+a+b\right)\)
\(\Leftrightarrow2a^2+2b^2+2=2ab+2a+2b\)
\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\)
Do \(\left(a-b\right)^2\ge0;\left(a-1\right)^2\ge0;\left(b-1\right)^2\ge0\)
\(\Rightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)
Dấu " = " xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-1=0\\b-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=b\\a=1\\b=1\end{matrix}\right.\)
Vậy \(a=b=1\)
M = a^2 + b^2 = (a+b)^2 - 2ab = (-5)^2 - 2x6 = 13
N = a^3 - b^3 = (a+b)^3 - 3ab (a+b) = (-5)^3 - 3x6x(-5) = -35
a) Ta dùng hằng đẳng thức: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\) (1)
Thay a+b=7 và ab=12 vào (1) ta được:
\(\left(a-b\right)^2=7^2-4.12=49-48=1\)
Vậy:.....
b) Ta dùng hằng đẳng thức: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\) (2)
Thay a-b=6 và ab = 3 vào (2) ta được:
\(\left(a+b\right)^2=6^2+4.3=36+12=48\)
Vậy:....
c) Dùng hằng đẳng thức: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\) (3)
Thay ab = 6 và a+b = -5 vào (3) ta được:
\(a^3+b^3=\left(-5\right)^3-3.6\left(-5\right)=-125-90=-215\)
Vậy......