K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2018

1. Ta có: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)

Theo đề ta có: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab=5^2-4.2=17\)

Vậy \(\left(a-b\right)^2=17\)

2. Ta có: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)

Theo đề ta có: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab=6^2+4.16=100\)

\(\Rightarrow\left[{}\begin{matrix}a+b=10\\a+b=-10\end{matrix}\right.\)

Vậy \(a+b=10\) hoặc \(a+b=-10\)

3. \(a^2+b^2+1=ab+a+b\)

\(\Rightarrow2\left(a^2+b^2+1\right)=2\left(ab+a+b\right)\)

\(\Rightarrow2a^2+2b^2+2=2ab+2a+2b\)

\(\Rightarrow2a^2+2b^2+2-2ab-2a-2b=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\) (1)

\(\left(a-b\right)^2\ge0\) \(\forall a;b\)
\(\left(a-1\right)^2\ge0\) \(\forall a\)

\(\left(b-1\right)^2\ge0\) \(\forall b\)

\(\Rightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) \(\forall a;b\) (2)

Từ (1)(2) \(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-1\right)^2=0\\\left(b-1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-1=0\\b-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=b\\a=1\\b=1\end{matrix}\right.\Rightarrow a=b=1\)

Vậy.... đpcm

Chúc bạn học tốt ahihi

5 tháng 9 2018

Bài 1 : \(a+b=5\)

\(\Leftrightarrow\left(a+b\right)^2=25\)

\(\Leftrightarrow a^2+b^2+2ab=25\)

\(\Leftrightarrow a^2+b^2+2.2=25\)

\(\Leftrightarrow a^2+b^2=21\)

\(\Leftrightarrow a^2+b^2-2ab=21-2ab\)

\(\Leftrightarrow\left(a-b\right)^2=21-2.2\)

\(\Leftrightarrow\left(a-b\right)^2=17\)

Bài 2 :

\(a-b=6\)

\(\Leftrightarrow\left(a-b\right)^2=36\)

\(\Leftrightarrow a^2-2ab+b^2=36\)

\(\Leftrightarrow a^2+b^2-2.16=36\)

\(\Leftrightarrow a^2+b^2=36+32=68\)

\(\Leftrightarrow a^2+b^2+2ab=68+2ab\)

\(\Leftrightarrow\left(a+b\right)^2=68+2.16=100\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=10\\a+b=-10\end{matrix}\right.\)

Bài 3 :

\(a^2+b^2+1=ab+a+b\)

\(\Leftrightarrow2\left(a^2+b^2+1\right)=2\left(ab+a+b\right)\)

\(\Leftrightarrow2a^2+2b^2+2=2ab+2a+2b\)

\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\)

Do \(\left(a-b\right)^2\ge0;\left(a-1\right)^2\ge0;\left(b-1\right)^2\ge0\)

\(\Rightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)

Dấu " = " xảy ra

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-1=0\\b-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=b\\a=1\\b=1\end{matrix}\right.\)

Vậy \(a=b=1\)

yeu

5 tháng 11 2016

4a) \(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+b^2+2ab\)

=> (a+b)^2=(a-b)^2+4ab

9 tháng 11 2016
  • 2x – x2 + 2 – x – (3x2 + 6x + 5x +10) = – 4x2 + 2
  • 2x – x2 + 2 – x – 3x2 – 6x – 5x – 10 = – 4x2 + 2 –10x = 10 x = – 1
  • 2x2 – 6x + x – 3 = 0

(x – 3)(2x + 1) = 0

x = 3 hay x = -1/2

3 tháng 8 2016

Bài 1:
Theo đầu bài ta có: 
\(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)
Từ đó suy ra:
\(H=a\cdot\left(a+b\right)\cdot\left(a+c\right)\)
\(=a\cdot-c\cdot-b\)
\(=a\cdot b\cdot c\)

\(K=c\cdot\left(c+a\right)\cdot\left(c+b\right)\)
\(=c\cdot-b\cdot-a\)
\(=a\cdot b\cdot c\)
Vậy H = K    ( đpcm )

3 tháng 8 2016

Này bạn, tớ thấy bài 1 đề phải là a + b + c = 0 chứ. Sao lại a + b + b = 0 được

10 tháng 8 2016

a) Ta dùng hằng đẳng thức: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)       (1)

Thay a+b=7 và ab=12 vào (1) ta được:

\(\left(a-b\right)^2=7^2-4.12=49-48=1\)

Vậy:.....

b) Ta dùng hằng đẳng thức: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)     (2)

Thay a-b=6 và ab = 3 vào (2) ta được:

\(\left(a+b\right)^2=6^2+4.3=36+12=48\)

Vậy:....

c) Dùng hằng đẳng thức: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)    (3)

Thay ab = 6 và a+b = -5 vào (3) ta được:

\(a^3+b^3=\left(-5\right)^3-3.6\left(-5\right)=-125-90=-215\)

Vậy......

17 tháng 7 2017

Bài 1:

a)\(a^2+b^2+c^2=ab+bc+ca\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Khi \(a=b=c\)

b)\(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2\)

\(\Rightarrow-2a^2-2b^2-2c^2+2ab+2bc+2ca=0\)

\(\Rightarrow-\left(a^2-2ab+b^2\right)-\left(b^2-2bc+c^2\right)-\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2\le0\)

Khi \(a=b=c\)

c)\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)

\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Khi \(a=b=c\)

Bài 2:

Từ \(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Rightarrow-2\left(ab+bc+ca\right)=a^2+b^2+c^2\)

\(\Rightarrow ab+bc+ca=-1\)\(\Rightarrow\left(ab+bc+ca\right)^2=1\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2\left(a^2bc+b^2ca+c^2ab\right)=1\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=1\left(vi`....a+b+c=0\right)\)

Khi đó: \(a^2+b^2+c^2=2\Rightarrow\left(a^2+b^2+c^2\right)^2=4\)

\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\)

\(\Rightarrow a^4+b^4+c^4+2=4\Rightarrow a^4+b^4+c^4=2\)

so u cn tk m sl fr u

17 tháng 7 2017

a2 + b2+ c2 = ab + bc + ca 

=> a2 + b2+ c2 -ab - bc - ca = 0 

=> 2 ( a2 + b2 + c2 -ab -bc - ca) =0

=> ( a2 - 2ab + b2 ) + ( b2 -2bc + c2 ) + ( c2 - 2ca + a2 ) = 0 

<=> ( a-b )2 + ( b -c)2 + ( c- a)2 =0

Do ( a -b)2 \(\ge\)0 ( b-c)2 + \(\ge\)0 ( c -a )2 \(\ge\)0

=> a-b =0 ; b -c = 0 ; c -a = 0 

=> a=b ; b = c ; c =a 

Vậy a = b = c 

21 tháng 10 2017

Bài 1 

\(x^5+x^4+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=\left(x^5+x^4+x^3\right)+\left(-x^3-x^2-x\right)+\left(x^2+x+1\right)\)

\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)

Bài 2

Ta có: \(\left(ax+b\right)\left(x^2+cx+1\right)=ax^3+bx^2+acx^2+bcx+ax+b\)

\(=ax^3+\left(b+ac\right)x^2+\left(bc+a\right)x+b=x^3-3x-2\)

\(\Rightarrow a=1\)

\(\Rightarrow b+ac=0\)

\(\Rightarrow bc+a=-3\)

\(\Rightarrow b=-2\)

Thay giá trị của \(a=1;b=-2\)vào \(b+ac=0\)ta được

\(\Leftrightarrow-2+c=0\Rightarrow c=2\)

   Vậy \(a=1;b=-2;c=2\)

Bài 3

Ta có \(\left(x^4-3x^3+2x^2-5x\right)\div\left(x^2-3x+1\right)=x^2+1\left(dư-2x+1\right)\)

\(\Rightarrow b=2x-1\)

Bài 4 (cũng làm tương tự như bài 3 nhé )

Bài 5(bài nãy dễ nên bạn tự làm đi nhé)

Bài 6

\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2=2a^2+2b^2\)

\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2=0\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\)\(\Rightarrow a-b=0\Rightarrow a=b\)

Bài 7 

\(a^2+b^2+c^2=ab+ac+bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Rightarrow a-b=0\Rightarrow a=b\)

\(\Rightarrow b-c=0\Rightarrow b=c\)

\(\Rightarrow a-c=0\Rightarrow a=c\)

   Vậy \(a=b=c\)

21 tháng 10 2017

I don't know

6) c) x3 - x2 + x = 1

<=> x3 - x2 + x - 1 = 0

<=> (x3 - x2) + (x - 1) = 0

<=> x2 (x - 1) + (x - 1) = 0

<=> (x - 1) (x2 + 1) = 0

=> x - 1 = 0 hoặc x2 + 1 = 0

* x - 1 = 0 => x = 1

* x2 + 1 = 0 => x2 = -1 => x = -1

Vậy x = 1 hoặc x = -1

15 tháng 11 2019

Bài 5: 

a) Đặt   \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=3^{32}-1\)

\(\Rightarrow A=\frac{3^{32}-1}{8}\)

b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)

=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)

\(=\left(7x+6-5+6x\right)^2\)

\(=\left(13x+1\right)^2\)