K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2023

\(B=1+3+3^2+3^3+3^4+...+3^{2006}\)

\(\Rightarrow3B=3\left(1+3+3^2+...+3^{2006}\right)\)

\(\Rightarrow3B=3+3^2+3^3+...+3^{2007}\)

26 tháng 7 2023

B=1+3+...+32006

=>3B=3+32+...+32007

A=(32007-1):2=32007:2-3:2

Để chứng minh rằng A={3^2007-1}:2, ta cần chứng minh hai phần:

1. Chia hết cho 2:
Ta có 3^2007-1 là số lẻ vì 3^2007 là số lẻ và 1 là số chẵn. Vì vậy, A chia hết cho 2.

2. Không chia hết cho 4:
Ta sẽ chứng minh rằng 3^2007-1 không chia hết cho 4.
Ta biết rằng 3^2 ≡ 1 (mod 4) (vì 3^2 = 9 ≡ 1 (mod 4))
Do đó, ta có thể viết lại 3^2007-1 = (3^2)^1003-1 = (3^2-1)(3^2)^1002+1 = 8k+1 với k là số nguyên.
Vì vậy, A không chia hết cho 4.

Từ hai phần trên, ta có thể kết luận rằng A={3^2007-1}:2.

26 tháng 7 2023

Để tính tổng S = 1 + 3 + 3^2 + ... + 3^2006, ta sử dụng công thức tổng của cấp số nhân:

S = (3^(2007) - 1) / (3 - 1)
= (3^(2007) - 1) / 2

Để chứng minh 3B = (3^(2007) - 1)/2, ta thay B = S vào:

3B = 3 * (3^(2007) - 1) / 2
= (3^(2008) - 3)/2
= (3^(2008) - 1 - 2)/2
= (3^(2008) - 1)/2 - 1/2
= (3^(2007) - 1)/2 - 1/2
= (3^(2007) - 1) / 2

Do đó ta đã chứng minh được 3B = (3^(2007) - 1)/2.

19 tháng 12 2018

\(A=1+2+2^2+.......+2^{2007}\Rightarrow2A=2+2^2+2^3+.........+2^{2008}\)

b) sai đề

c) dễ lắm

19 tháng 12 2018

c.Đâu mà c

19 tháng 9 2019

Mik làm được 1 bài thôi . Tiếc quá mình sắp phải đi học rồi.

BÀi 12:

S=1 + 2 + 22 + `23 +..........+ 22017

2S=2 + 22 + `23 + 24 +..........+22017 + 22018

Trừ đi hai vế ta được:

S=1 + 22018

2 tháng 10 2018

mình lỡ viết nhầm 3B = 32007 - 1 chia hết cho 2

chịuiuiuiuiuiuiuiuiuiuiuiu

4 tháng 8 2018

Ta có : A = 1 + 2 + 2+ 23 + ...... + 22007

=> 2A = 2 + 2+ 23 + ...... + 22008

b) Suy ra : 2A - A = 22008 - 1

=> A = 22008 - 1

Vậy đpcm

4 tháng 8 2018

a) ta có: A = 1 + 2^1 + 2^2 + 2^3 + ...+ 2^2007

=> 2A = 2 + 2^2+2^3+2^4+...+2^2008

b) ta có: 2A = 2 + 2^2 + 2^3 + 2^4+...+2^2008

=> 2A-A = 2^2008 - 1

A = 2^2008 - 1

29 tháng 8 2023

giúp mình với !!!!!!!!!!!!!!!!!!!!!!!!

29 tháng 8 2023

Câu b, bài b1 chứng minh \(a=2^{2006}-1?\)

Đề bài sai thay B thành A và đổi dấu bằng sau số 1 thành cộng.ô

a,        3A = 3 + 3^2 + 3^3 +......+ 3^2007

b,  3A - A = 3^2007 - 1 

           2A = 3^2007 - 1

             A = (3^2007 - 1) : 2

Vâỵ ...

4 tháng 10 2018

a,\(3B=3+3^2+3^3+...+3^{2007}\)

b\(do\)\(3^{2007},1\)LÀ SỐ LẺ NÊN HIỆU LÀ SỐ CHẴN CHIA HẾT CHO 2

17 tháng 9 2024

có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 +  2^10]

Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]

Q = 2 . 3+2^3 .3 +... + 2^9 .3

Q = 3. [ 2 + 2^3 +... + 2^9]

Vậy Q chia hết cho 3