Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ok tui làm nè
a) 3B=3+3^2+3^3+...+3^2007
=>3B-B=2B=3^2007-1
=>B=\(\frac{3^{2007}-1}{2}\)
b) ở câu này mình có thể áp dụng hằng đẳng thức \(^{a^n}\)- \(^{b^n}\) nhưng để những bạn ko chuyên hoặc bthuong hiểu mình sẽ làm cách khác
ta có \(^{4^2}\) chia 3 dư 1 => \(^{\left(4^2\right)^3}\)chia 3 dư 1
=>\(^{\left(4^2\right)^3}\).4 chia cho 3 dư 1 nữa
do đó \(^{4^7}\)-1 sẽ chia hết cho 3
\(B=1+3+3^2+3^3+3^4+...+3^{2006}\)
\(\Rightarrow3B=3\left(1+3+3^2+...+3^{2006}\right)\)
\(\Rightarrow3B=3+3^2+3^3+...+3^{2007}\)
B=1+3+...+32006
=>3B=3+32+...+32007
A=(32007-1):2=32007:2-3:2
Để chứng minh rằng A={3^2007-1}:2, ta cần chứng minh hai phần:
1. Chia hết cho 2:
Ta có 3^2007-1 là số lẻ vì 3^2007 là số lẻ và 1 là số chẵn. Vì vậy, A chia hết cho 2.
2. Không chia hết cho 4:
Ta sẽ chứng minh rằng 3^2007-1 không chia hết cho 4.
Ta biết rằng 3^2 ≡ 1 (mod 4) (vì 3^2 = 9 ≡ 1 (mod 4))
Do đó, ta có thể viết lại 3^2007-1 = (3^2)^1003-1 = (3^2-1)(3^2)^1002+1 = 8k+1 với k là số nguyên.
Vì vậy, A không chia hết cho 4.
Từ hai phần trên, ta có thể kết luận rằng A={3^2007-1}:2.
\(A=1+2+2^2+.......+2^{2007}\Rightarrow2A=2+2^2+2^3+.........+2^{2008}\)
b) sai đề
c) dễ lắm
Mik làm được 1 bài thôi . Tiếc quá mình sắp phải đi học rồi.
BÀi 12:
S=1 + 2 + 22 + `23 +..........+ 22017
2S=2 + 22 + `23 + 24 +..........+22017 + 22018
Trừ đi hai vế ta được:
S=1 + 22018
a)Ta có:
S = 2 + 22 + 23 +........+ 2100
=> S = (2+23) + (22+24) +............+ (298+2100)
S = 2(1+22) + 22(1+22) +.......... + 298(1+22)
S = (1+22).(2+22+.......+298)
S=5.(2+22+.......+298) chia hết cho 5 (đpcm)
Vậy S chia hết cho 5
b) Ta có
4a+3b=4a+7b-4b=4(a-b)+7b
Vì a-b chia hết cho 7 nên 4(a-b) chia hết cho 7 và 7b chia hết cho 7(vì có 1 thừa số là 7) nên 4(a-b)+7b chia hết cho 7
=>4a+3b chia hết cho 7(đpcm)
Vậy nếu a-b chia hết cho 7 thì 4a+3b sẽ chia hết cho 7.
1)A=3+32+33+...+32008
A=(3+32)+(33+34)+...+(32007+32008)
A=3(1+3)+33(1+3)+...+32007(1+3)
A=3.4+33.4+...+32007.4
A=4(3+....+32007) chia hết cho 4
\(A=1+2^1+2^2+...+2^{2007}\)
\(\Rightarrow2A=2+2^2+...+2^{2008}\)
\(\Rightarrow2A-A=\left(2+2^2+...+2^{2008}\right)-\left(1+2+...+2^{2007}\right)\)
\(\Rightarrow A=2^{2008}-1\)
\(A=1+3+...+3^7\)
\(\Rightarrow3A=3+3^2+...+3^8\)
\(\Rightarrow3A-A=\left(3+3^2+...+3^8\right)-\left(1+3+...+3^7\right)\)
\(\Rightarrow2A=3^8-1\)
\(\Rightarrow A=\frac{3^8-1}{2}\)
1, A=(3+3^2)+(3^3+3^4)+...+(3^2007+3^2008)
A= 3.4+3^3.4+...+3^2007 .4
A= 4(3+3^3+...+3^2008)=>ĐPCM
2, theo đề bài :a+b chia hết cho 2
ta có : a+3b=a+b+2b
vì a+b chia hết cho 2 mà 2b chia hết cho 2=> ĐPCM
Để tính tổng S = 1 + 3 + 3^2 + ... + 3^2006, ta sử dụng công thức tổng của cấp số nhân:
S = (3^(2007) - 1) / (3 - 1)
= (3^(2007) - 1) / 2
Để chứng minh 3B = (3^(2007) - 1)/2, ta thay B = S vào:
3B = 3 * (3^(2007) - 1) / 2
= (3^(2008) - 3)/2
= (3^(2008) - 1 - 2)/2
= (3^(2008) - 1)/2 - 1/2
= (3^(2007) - 1)/2 - 1/2
= (3^(2007) - 1) / 2
Do đó ta đã chứng minh được 3B = (3^(2007) - 1)/2.