Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: |x + 2| \(\le\)1 => |x + 2| = 0
=> x + 2 = 0
x = 0 - 2
x = -2
Câu 3: |x| + |y| + |z| = 0
Vì giá trị tuyệt đối phải là số lớn hơn hoặc bằng 0
=> |x| = 0, |y| = 0, |z| = 0
=> x = 0, y = 0, z = 0
Tìm x,y,z biết ; /x+20/+/y-11/+/z+2003/ nhỏ hơn hoặc bằng 0
mik đang cần rất gấp ai nhanh mik sẽ tick
Ta có: \(\left|x+20\right|;\left|y-11\right|;\left|z+2003\right|\ge0\)
\(\Rightarrow\left|x+20\right|+\left|y-11\right|+\left|z+2003\right|\ge0\)
Theo đề: \(\left|x+20\right|+\left|y-11\right|+\left|z+2003\right|\le0\)
\(\Rightarrow\left|x+20\right|+\left|y-11\right|+\left|z+2003\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x+20\right|=0\\\left|y-11\right|=0\\\left|z+2003\right|=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-20\\y=11\\z=-2003\end{cases}}\)
|x+19| \(\ge\) 0 ; |y-5| \(\ge\) 0 ; |z+2015| \(\ge\) 0
=> |x+19| + | y-5| + | z+2015| \(\ge\) 0
mà |x+19| + | y-5| + |z+2015| \(\le\)0
=> |x+19| + | y-5| + |z+2015| = 0
<=> |x+19| = |y-5| = |z+2015| = 0
<=> x+19= y-5 = z+2015 = 0
<=> x= -19 ; y=5 ; z= -2015
Vậy x= -19 ; y=5 ; z= -2015
Vì x,y,z thuộc Z nên /x+19/;/y-5/+/z+2015/ là các số tự nhiên
Mà /x+19/+/y-5/+/z+2015/ < 0
Do đó:/x+19/=/y-5/=/z+2015/=0
=>x+19=y-5=z+2015=0
=>x=-19;y=5;-2015
Vì /x-15/ lớn hơn hoặc bằng 0
/y+20/ lớn hơn hoặc bằng 0
mà /x-15/+/y+20/=0
suy ra /x-15/=0
và /y+20/=0
suy ra x-15=0
và y+20=0
suy ra x=0+15
và y=0-20
suy ra x=15
và y= -20
Vậy x=15
y= -20
(bạn hãy dùng kí hiệu nhé,vì đánh máy nên tớ không viết ki hiệu được.Nhớ nhấn đúng cho mình)
a, vì |x-15| luôn > hoặc = 0
|y+20| cũng vậy nên
x=15
y=-20
hai ý kia thì chịu
bạn đã k đủ 3k hẹn lần sau
Bai 1. tinh chat bac cau
bai 2> a) x=+-2003
b) >x=0
c)x=y=0
\(\left|x\right|+\left|y\right|+\left|z\right|=0\)
Ta có \(\left|x\right|\ge0\forall x;\left|y\right|\ge0\forall y;\left|z\right|\ge0\forall z\)
\(\Rightarrow\left|x\right|+\left|y\right|+\left|z\right|\ge0\forall x,y,z\)
\(\Rightarrow\left|x\right|+\left|y\right|+\left|z\right|\ge0\)
\(\Rightarrow\left|x\right|+\left|y\right|+\left|z\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)
\(\left|x\right|+\left|y\right|=0\)
Ta có \(\left|x\right|\ge0\forall x;\left|y\right|\ge0\forall y\)
\(\Rightarrow\left|x\right|+\left|y\right|\ge0\forall x;y\)
\(\Rightarrow\left|x\right|+\left|y\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\)