Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x,y\inℤ\)phải không?
Ta có:
\(\left(x^2y^2+4x^2+2y^2-4\right)-\left(x^2y^2+5x^2+y^2-3\right)=0\)\(=0\)
\(\Rightarrow x^2y^2+4x^2+2y^2-4-x^2y^2-5x^2-y^2+3=0\) (bỏ ngoặc đổi dấu)
\(\Rightarrow\left(x^2y^2-x^2y^2\right)+\left(4x^2-5x^2\right)+\left(2y^2-y^2\right)+\left(-4+3\right)=0\)
\(\Rightarrow0-x^2+y^2-1=0\)
\(\Rightarrow y^2-x^2=1\)
\(\Rightarrow\left(y-x\right)\left(y+x\right)=1\)
Vậy ta có
\(\left(y-x\right)=1;\left(y+x\right)=1\)\(\Rightarrow y=1;x=0\)
Hoặc \(\left(y-x\right)=-1;\left(y+x\right)=-1\)\(\Rightarrow y=-1;x=0\)
Vậy ...
(Không biết đúng không nữa, nếu thấy đúng thì t***k mik nhé!)
phải cho điều kiện là x,y thuộc Z
xy + 3x - 2y - 7 = 0
x ( y + 3 ) - ( 2y + 6 ) - 1 = 0
x . ( y + 3 ) - 2 . ( y + 3 ) = 1
( x - 2 ) . ( y + 3 ) = 1
\(\Rightarrow\)x - 2, y + 3 thuộc Ư ( 1 ) = { 1 ; -1 }
Sau đó cậu lập bảng tìm x,y
x2 + 2x = 0
=> x(x + 2) = 0
=> \(\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
(x - 2) + 3.x2 - 6x = 0
=> (x - 2) + 3x2 - 3x . 2 = 0
=> (x - 2) + 3x.(x - 2) = 0
=> (1 + 3x)(x - 2) = 0
=> \(\orbr{\begin{cases}1+3x=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=2\end{cases}}\)
Ta có : |3x - 5| luôn luôn lớn hơn hoặc bằng 0 với mọi x
|8 - 2y| luôn luôn lớn hơn hoặc bằng 0 với mọi x
Mà : |3x - 5| + |8 - 2y| = 0
Nên : |3x - 5| = |8 - 2y| = 0
=> 3x - 5 = 8 - 2y = 0
=> 3x = 5
2y = 8
=> x = 5/3
y = 4
Ta có : |3x - 5| luôn luôn lớn hơn hoặc bằng 0 với mọi x
|8 - 2y| luôn luôn lớn hơn hoặc bằng 0 với mọi x
Mà : |3x - 5| + |8 - 2y| = 0
Nên : |3x - 5| = |8 - 2y| = 0
=> 3x - 5 = 8 - 2y = 0
=> 3x = 5
2y = 8
=> x = 5/3
y = 4
h/ Với mọi x, y ta có :
\(\left\{{}\begin{matrix}\left|x-0,5\right|\ge0\\\left|x+y-17\right|\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left|x-0,5\right|+\left|x+y-17\right|\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-0,5\right|=0\\\left|x+y-17\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-0,5=0\\x+y-17=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0,5\\y=16,5\end{matrix}\right.\)
Vaayj...
m/ \(\left(5-x\right)+\left(3x-\frac{1}{4}\right)>0\)
\(\Leftrightarrow5-x+3x-\frac{1}{4}>0\)
\(\Leftrightarrow2x-4,75>0\)
\(\Leftrightarrow x>2,375\)
Vậy...
q/ \(5^{3x-1}=625\)
\(\Leftrightarrow5^{3x-1}=5^4\)
\(\Leftrightarrow3x-1=4\Leftrightarrow x=\frac{5}{3}\)
Vậy..
\(\frac{x^2+xy+y^2}{x^2-xy}\)
x - 2y = 0 <=> x = 2y
Thế vào ta được :
\(\frac{x^2+xy+y^2}{x^2-xy}=\frac{\left(2y\right)^2+2y\cdot y+y^2}{\left(2y\right)^2-2y\cdot y}=\frac{4y^2+2y^2+y^2}{4y^2-2y^2}=\frac{7y^2}{2y^2}=\frac{7}{2}\)
Vậy giá trị của biểu thức = 7/2 khi x - 2y = 0
a) ( x-1) x + 2 = (x-1) x + 6
\(\Leftrightarrow\left(x-1\right)^x+2-\left(x-1\right)^x-6=0\)
\(\Leftrightarrow-4=0\) ( vô lý )
Vậy phương trình vô nghiệm
b) (x+20)100 + |y+4| = 0
Vì \(\left(x+2\right)^{100}\ge0\forall x;\left|y+4\right|\ge0\forall y\)
\(\Rightarrow\hept{\begin{cases}\left(x+20\right)^{100}=0\\\left|y+4\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+20=0\\y+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-20\\y=-4\end{cases}}\)
Vậy x= -20; y= -4
a) | x - 1, 3 | + | 5, 3 - y | = 0
Ta có : \(\hept{\begin{cases}\left|x-1,3\right|\ge0\forall x\\\left|5,3-y\right|\ge0\forall y\end{cases}}\Rightarrow\left|x-1,3\right|+\left|5,3-y\right|\ge0\forall x,y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1,3=0\\5,3-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1,3\\y=5,3\end{cases}}\)
Vậy x = 1, 3 ; y = 5, 3
b) | x + 2 | + | 4/5 - 2y | = 0
Ta có : \(\hept{\begin{cases}\left|x+2\right|\ge0\forall x\\\left|\frac{4}{5}-2y\right|\ge0\forall y\end{cases}}\Rightarrow\left|x+2\right|+\left|\frac{4}{5}-2y\right|\ge0\forall x,y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+2=0\\\frac{4}{5}-2y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=\frac{2}{5}\end{cases}}\)
Vậy x = -2 ; y = 2/5