K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2015

\(\frac{x+y}{5}=\frac{x-y}{1}\)

=>\(\frac{x}{5}+\frac{y}{5}=x-y\)

=>\(\frac{y}{5}+y=x-\frac{x}{5}\)

=>\(\frac{y}{5}+\frac{5y}{5}=\frac{5x}{5}-\frac{x}{5}\)

=>\(\frac{y+5y}{5}=\frac{5x-x}{5}\)

=>\(\frac{6y}{5}=\frac{4x}{5}\)

=>6y=4x

=>\(y=\frac{4}{6}.x\)

Lại có: \(\frac{x-y}{1}=\frac{x.y}{2}\)

=>2.(x-y)=x.y

=>\(2.\left(x-\frac{4}{6}.x\right)=x.y\)

=>\(2.\frac{1}{3}.x=x.y\)

=>\(\frac{2}{3}=y\)

=>\(x=\frac{2}{3}:\frac{4}{6}=1\)

Vậy x=1,\(y=\frac{2}{3}\)

4 tháng 7 2017

Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)

=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

=>x=27;z=36;z=60

Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)

+)k=-2 => x=-4;y=-5

+)k=2 => x=4;y=5

Vậy x=-4;y=-5 hoặc x=4;y=5

12 tháng 7 2016

\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)

\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)

\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn

Bài 2:

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng t/c dãy tỉ số bằng nhau:

Bạn tự làm nha

12 tháng 7 2016

Bài 1 :

\(\frac{x}{y}=\frac{5}{3}\)

\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )

\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)

\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)

\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)

Mà x ; y cùng dấu nên :

\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)

Bài 2 :

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)

\(\frac{x}{10}=3\Rightarrow x=30\)

\(\frac{y}{15}=3\Rightarrow y=45\)

\(\frac{z}{21}=3\Rightarrow z=63\)

22 tháng 8 2016

bai1;a) cộng 2 vế của pt có; 

x(x+y+z) +y(x+y+z) +z(x+y+z) = -5+9+5

(x+y+z)2 =9 => x+y+z = 3

x = -5/3

y = 9/3 =3

z = 5/3

b) x = 1/2 ; y =1

bai2;M = (a+b+c) / 2(a+b+c) = 1/2 không phải là số nguyên

22 tháng 8 2016

2)

+Áp dụng : \(\frac{a}{a+b}>\frac{a}{a+b+c}\Rightarrow M>1\)

+ Áp dụng : \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\Rightarrow M< 2\)

2>M>1  => M không là số nguyên.

4 tháng 10 2016

Bài 1:

 \(\frac{x}{2}\) = \(\frac{y}{3}\) , \(\frac{y}{4}\) = \(\frac{z}{5}\)  và x + y - z = 10

\(\frac{x}{2}\) = \(\frac{y}{3}\) --> \(\frac{x}{2.4}\) = \(\frac{y}{3.4}\) => \(\frac{x}{8}\) = \(\frac{y}{12}\) 

\(\frac{y}{4}\) = \(\frac{z}{5}\) --> \(\frac{y}{4.3}\) = \(\frac{z}{5.3}\) => \(\frac{y}{12}\) = \(\frac{z}{15}\) 

=> \(\frac{x}{8}=\frac{y}{12}\)  = \(\frac{z}{15}\)             

- Áp dụng tính chất dãy tỉ số bằng nhau ta có:

 \(\frac{x}{8}\) = \(\frac{y}{12}\) = \(\frac{z}{15}\) --> \(\frac{x+y-z}{8+12-15}_{ }\) = \(\frac{10}{5}\) = 2

=> \(\frac{x}{8}\) = 2 --> x = 16

      \(\frac{y}{12}=2\) --> y = 24

      \(\frac{z}{15}=2\) --> z = 30

Vậy x = 16 ; y = 24 ; z = 30

Bài 2: 

               \(\frac{x}{2}=\frac{y}{5}\) và x . y = 10

  Đặt \(\frac{x}{2}=\frac{y}{5}=k\) 

Ta có: x = 2 . k ; y = 5 . k

          x . y = 10 => 2k . 5k = 10

                          => 10 . \(^{k^2}\) = 10

                          => \(^{k^2}\) = 1 --> k = -1 hoặc k = 1

          k = 1 ta có \(\frac{x}{2}=\frac{y}{5}=1\) --> x = 2 ; y = 5

          k = -1 ta có \(\frac{x}{2}=\frac{y}{5}=-1\) --> x = -2 ; y = -5

 

                                                              

4 tháng 10 2016

Bài 1:

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\)\(\frac{y}{12}=\frac{z}{15}\)

=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

=>\(\begin{cases}x=16\\y=24\\z=30\end{cases}\)

Bài 2:

Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\)

Có: xy=10

\(\Leftrightarrow2k\cdot5k=10\)

\(\Leftrightarrow k^2=1\Leftrightarrow\left[\begin{array}{nghiempt}k=1\\k=-1\end{array}\right.\)

Với k=1 thì x=2 ; y=5

Với k=-1 thì x=-2 ; y=-5

 

13 tháng 10 2016

a) Đặt \(\frac{x}{2}=\frac{y}{5}=k\)

\(\Rightarrow x=2k\)

\(\Rightarrow y=5k\)

\(\Rightarrow xy=2k.5k=10k^2\)

\(\Rightarrow10k^2=10\)

\(\Rightarrow k^2=\frac{10}{10}=1\Rightarrow\left[\begin{array}{nghiempt}k=1\\k=-1\end{array}\right.\)

Với \(k=1\)

\(\Rightarrow x=2k=2.1=2\)

\(\Rightarrow y=5k\Rightarrow y=5.1=5\)

Với \(k=-1\)

\(\Rightarrow x=2k=-1.2=-2\)

\(\Rightarrow y=5k=-1.5=-5\)

 

13 tháng 10 2016

b) \(7x=3y\Rightarrow\frac{7x}{21}=\frac{3y}{21}\Rightarrow\frac{x}{7}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{16}{4}=4\)

  • \(x=4.7=28\)
  • \(y=4.3=12\)

Vậy: \(x=28,y=12\)

2 tháng 8 2018

a. Ta có: \(\frac{x}{5}=\frac{y}{7}=\frac{x-y}{5-7}=\frac{-12}{-2}=6\)

=> \(\hept{\begin{cases}x=6.5=30\\y=6.7=42\end{cases}}\)

b. x.8 = y. 16

=> \(\frac{x}{16}=\frac{y}{8}=\frac{y-x}{8-16}=\frac{64}{-8}=-8\)

=> \(\hept{\begin{cases}x=-8.16=-128\\y=-8.8=-64\end{cases}}\)

c.Ta có:  \(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{x-y}{2+5}=\frac{7}{7}=1\)

=> \(\hept{\begin{cases}x=1.2=2\\y=1.\left(-5\right)=-5\end{cases}}\)

d. Ta có: xy = 10 => x = \(\frac{10}{y}\)(1)

Thay (1) vào \(\frac{x}{2}=\frac{y}{5}\), ta được:

\(\frac{10}{\frac{y}{2}}=\frac{y}{5}\)=> \(\frac{5}{y}=\frac{y}{5}\)

=> y2 = 25

=> y = + 5

y = 5 => x = \(\frac{10}{y}\)\(\frac{10}{5}\)= 2

y = -5 => x = \(\frac{10}{y}\)\(\frac{10}{-5}\) = -2

Vậy y = 5; x = 2

       y = - 5: x = -2

2 tháng 8 2018

a) Đặt  \(\frac{x}{5}=\frac{y}{7}=k\left(k\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)

Mà  \(x-y=-12\)

\(\Rightarrow5k-7k=-12\)

\(\Leftrightarrow-2k=-12\)

\(\Leftrightarrow k=6\)

\(\Rightarrow\hept{\begin{cases}x=5k=30\\y=7k=42\end{cases}}\)

Vậy ...

b) Ta có :  \(x.8=y.16\Leftrightarrow\frac{x}{16}=\frac{y}{8}\)

Đặt  \(\frac{x}{16}=\frac{y}{8}=k\left(k\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}x=16k\\y=8k\end{cases}}\)

Mà  \(y-x=64\)

\(\Rightarrow8k-16k=64\)

\(\Leftrightarrow-8k=64\)

\(\Leftrightarrow k=-2\)

\(\Rightarrow\hept{\begin{cases}x=16k=-32\\y=8k=-16\end{cases}}\)

Vậy ...

31 tháng 5 2017

\(K=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{2.\frac{\left(x+y\right)^2}{4}}\)

\(=\frac{4}{1}+\frac{1}{2.\frac{1}{4}}=6\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

31 tháng 5 2017

Ta có \(\hept{\begin{cases}\left(x+y\right)^2=1\\\left(x-y\right)^2\ge0\end{cases}}\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

\(xy\le\frac{\left(x^2+^2\right)}{2}\)nên \(K=\frac{1}{x^2+y^2}+\frac{2}{xy}\ge\frac{1}{x^2+y^2}+\frac{2}{x^2+y^2}=\frac{3}{x^2+y^2}\ge\frac{3}{\frac{1}{2}}=6\)

\(K_{min}=6\)dấu "=" khi \(x=y=\frac{1}{2}\)