K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

mình mới hk lớp 7.Chịu

9 tháng 5 2016

gap lap,ai ho de.......

20 tháng 4 2016

dùng phương pháp đánh giá nha,,,,,,x=1 hoặc x=0

21 tháng 4 2016

k đc nhé đánh giá sao đc mk cx có cách giải nhưng dài nên hỏi m.n cách khác

14 tháng 5 2016

x = 2 hoặc x = 1

14 tháng 5 2016

1=<x=<2

23 tháng 11 2016

Từ giả thiết ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow x+y=0\) hoặc \(y+z=0\) hoặc \(z+x=0\)

+) Nếu x + y = 0 hoặc z + x = 0 thì ta không tính được giá trị biểu thức.

+) Nếu y + z = 0 thì \(y=-z\Leftrightarrow y^{2017}=-z^{2017}\Leftrightarrow y^{2017}+z^{2017}=0\)

Suy ra \(\left(x^{2016}+y^{2016}\right)\left(y^{2017}+z^{2017}\right)\left(x^{2018}+z^{2018}\right)=0\)

12 tháng 7 2016

\(\Leftrightarrow x^3\left(x+1\right)+x\left(x+1\right)+1=2016^y.\)(2)

\(x\in Z\Rightarrow x\left(x+1\right)\)chẵn ( tích của 2 số nguyên liên tiếp).

=> Vế Trái (2) là 1 số nguyên lẻ.

\(y\in Z\)và nếu:

  • y < 0, VP (2) là 1 phân số >0 và <1, không thể bằng VT là 1 số nguyên lẻ.
  • y > 0, VP (2) là 1 số nguyên chẵn, không thể bằng VT là 1 số nguyên lẻ.
  • => y = 0.

Với y = 0, phương trình đã cho trở thành:

\(x^4+x^3+x^2+x+1=2016^0=1\)

\(\Leftrightarrow x\left(x+1\right)\left(x^2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy, PT có 2 cặp nghiệm là: (0; 0) và (-1; 0).

21 tháng 10 2017

2017

chắc chắn 100% k cho mình nhá kết bạn luôn đi

21 tháng 10 2017

nhưng bn ơi cách lm thì ntn

21 tháng 11 2016

Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow x+y=0\) hoặc \(y+z=0\) hoặc \(z+x=0\)

Tới đây bạn tự làm được rồi ^^

21 tháng 11 2016

thank you