Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|x-\dfrac{5}{3}\right|< \dfrac{1}{3}\)
\(\Rightarrow\dfrac{-1}{3}< x-\dfrac{5}{3}< \dfrac{1}{3}\)
\(\Rightarrow\dfrac{-1}{3}+\dfrac{5}{3}< x-\dfrac{5}{3}+\dfrac{5}{3}< \dfrac{1}{3}+\dfrac{5}{3}\)
\(\Rightarrow\dfrac{4}{3}< x< 2\)
b) \(\left|x+\dfrac{11}{2}\right|>\left|-5,5\right|=5,5\)
\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{11}{2}< 5,5\\x+\dfrac{11}{2}>5,5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 5,5-\dfrac{11}{2}=0\\x>5,5-\dfrac{11}{2}=0\end{matrix}\right.\)
=> Với x khác 0 thì thõa mãn đề bài
c) \(\dfrac{2}{5}< \left|x-\dfrac{7}{5}\right|< \dfrac{3}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{5}< x-\dfrac{7}{5}< \dfrac{3}{5}\\-\dfrac{2}{5}< x-\dfrac{7}{5}< -\dfrac{3}{5}\end{matrix}\right.\)
Ta thấy trường hợp 2 là trường hợp không thể xảy ra
=> Loại
Vậy \(\dfrac{2}{5}< x-\dfrac{7}{5}< \dfrac{3}{5}\)
\(\Rightarrow\dfrac{2}{5}+\dfrac{7}{5}< x< \dfrac{3}{5}+\dfrac{7}{5}\)
\(\Rightarrow\dfrac{9}{5}< x< 2\) (nhận)
p/s : làm đại nha , ko bik đúng sai
Giải:
a) \(\dfrac{1}{2}< x< \dfrac{7}{8}\)
\(\Leftrightarrow\dfrac{12}{24}< x< \dfrac{21}{24}\)
\(\Leftrightarrow x\in\left\{\dfrac{13}{24};\dfrac{14}{24};\dfrac{15}{24};\dfrac{16}{24};\dfrac{17}{24};\dfrac{18}{24};\dfrac{19}{24};\dfrac{20}{24}\right\}\)
Mà x là số hữu tỉ có mẫu là 24
\(\Leftrightarrow x=\left\{\dfrac{13}{24};\dfrac{17}{24};\dfrac{19}{24}\right\}\)
Vậy ...
b) \(\dfrac{3}{5}< x< \dfrac{4}{5}\)
\(\Leftrightarrow\dfrac{12}{20}< x< \dfrac{12}{15}\)
\(\Leftrightarrow x\in\left\{\dfrac{12}{19};\dfrac{12}{18};\dfrac{12}{17};\dfrac{12}{16}\right\}\)
Mà x là số hữu tỉ có tử là 12
\(\Leftrightarrow x=\left\{\dfrac{12}{19};\dfrac{12}{17}\right\}\)
Vậy ...
mấy cái này đơn dãng vô cùng nhưng có đều bn ra đề dài quá nha
a) \(3x+4\ge7\Leftrightarrow3x\ge7-4\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\) vậy \(x\ge1\)
b) \(-5x+1< 11\Leftrightarrow-5x< 11-1\Leftrightarrow-5x< 10\Leftrightarrow x>\dfrac{10}{-5}\)
\(\Leftrightarrow x>-2\) vậy \(x>-2\)
c) \(\dfrac{5}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\) vậy \(x< 3\)
d) \(\dfrac{-7}{2-x}\ge0\Leftrightarrow2-x\le0\Leftrightarrow x\ge2\) vậy \(x\ge2\)
e) \(x^2+4x>0\Leftrightarrow x\left(x+4\right)>0\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x+4>0\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x+4< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x>-4\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x< -4\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< -4\end{matrix}\right.\) vậy \(x>0\) hoặc \(x< -4\)
f) \(\dfrac{x-2}{x-6}< 0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-2>0\\x-6>0\end{matrix}\right.\\\left[{}\begin{matrix}x-2< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x>6\end{matrix}\right.\\\left[{}\begin{matrix}x< 2\\x< 6\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>6\\x< 2\end{matrix}\right.\)
vậy \(x>6\) hoặc \(x< 2\)
g) \(\left(x-1\right)\left(x+2\right)\left(3-x\right)< 0\Leftrightarrow-\left[\left(x-1\right)\left(x+2\right)\left(x-3\right)\right]< 0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)>0\)
th1: 3 số hạng đều dương : \(\Leftrightarrow\left[{}\begin{matrix}x-1>0\\x+2>0\\x-3>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>1\\x>-2\\x>3\end{matrix}\right.\) \(\Rightarrow x>3\)
th2: 2 âm 1 dương : (vì trong 3 số hạng ta có : \(\left(x+2\right)\) lớn nhất \(\Rightarrow\left(x+2\right)\) dương)
\(\Leftrightarrow\left[{}\begin{matrix}x-1< 0\\x+2>0\\x-3< 0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>-2\\x< 3\end{matrix}\right.\) \(\Rightarrow-2< x< 1\)
vậy \(x>3\) hoặc \(-2< x< 1\)
h) \(\dfrac{x^2-1}{x}>0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2-1>0\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2-1< 0\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2>1\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}-1< x< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1\\-1< x< 0\end{matrix}\right.\) vậy \(x>1\) hoặc \(-1< x< 0\)
i) \(x^2+x-2< 0\Leftrightarrow x^2+x+\dfrac{1}{4}-\dfrac{9}{4}< 0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{9}{4}< 0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2< \dfrac{9}{4}\Leftrightarrow\dfrac{-3}{2}< \left(x+\dfrac{1}{2}\right)< \dfrac{3}{2}\Leftrightarrow-2< x< 1\)
vậy \(-2< x< 1\)
Mysterious Person, Đoàn Đức Hiếu, Nguyễn Đình Dũng , ... giúp mình!
b: \(\left|x-\dfrac{3}{5}\right|< \dfrac{1}{3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{3}{5}>-\dfrac{1}{3}\\x-\dfrac{3}{5}< \dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\dfrac{4}{15}< x< \dfrac{14}{15}\)
c: \(\left|x+\dfrac{11}{2}\right|>-5.5\)
mà \(\left|x+\dfrac{11}{2}\right|\ge0\forall x\)
nên \(x\in R\)
a/ \(\left(x+1\right)\left(x-2\right)< 0\)
TH1:\(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\) (vô lý)
TH2:\(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\)\(\Rightarrow-1< x< 2\)
Vậy.........
b/ \(\left(x-3\right)\left(x-4\right)>0\)
TH1:\(\left\{{}\begin{matrix}x-3>0\\x-4>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>3\\x>4\end{matrix}\right.\)\(\Rightarrow x>4\)
TH2:\(\left\{{}\begin{matrix}x-3< 0\\x-4< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< 3\\x< 4\end{matrix}\right.\)\(\Rightarrow x< 3\)
Vậy...............
c/ \(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{1}{4}\right)< x< \dfrac{1}{48}-\left(\dfrac{1}{16}-\dfrac{1}{6}\right)\)
\(\Rightarrow\dfrac{1}{2}-\dfrac{7}{12}< x< \dfrac{1}{48}-\dfrac{1}{8}\)
\(\Rightarrow\dfrac{-1}{12}< x< -\dfrac{5}{48}\)
Vậy...............
Để ( x + 1 ) ( x - 2 ) < 0
=> x + 1 và x - 2 phải khác dấu mà x + 1 > x + 2
=> x + 1 dương x + 2 âm
Tức là x + 1 > 0 => x > - 1 và x - 2 < 0 => x < 2
b: 2x-3<0
=>2x<3
hay x<3/2
c: \(\left(2x-4\right)\left(9-3x\right)>0\)
=>(x-2)(x-3)<0
=>2<x<3
d: \(\dfrac{2}{3}x-\dfrac{3}{4}>0\)
=>2/3x>3/4
hay x>9/8
a: =>\(\left\{{}\begin{matrix}\dfrac{13}{11}-x>\dfrac{7}{9}\\\dfrac{13}{11}-x< \dfrac{15}{16}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x>\dfrac{7}{9}-\dfrac{13}{11}=-\dfrac{170}{209}\\-x< \dfrac{15}{16}-\dfrac{13}{11}=-\dfrac{43}{176}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{170}{209}\\x>\dfrac{43}{176}\end{matrix}\right.\)
b: =>-2<x-1<2
=>-1<x<3
a) \(\dfrac{-12}{17}< \dfrac{x}{17}< \dfrac{-8}{17}\)
\(\Rightarrow-12< x< -8\)
\(\Rightarrow x\in\left\{-11;-10;-9\right\}\)
b) \(\dfrac{-1}{2}< x< \dfrac{5}{3}\)
\(\Rightarrow\dfrac{-3}{6}< x< \dfrac{10}{6}\)
\(\Rightarrow x\in\left\{\dfrac{-2}{6};\dfrac{-1}{6};0;\dfrac{1}{6};...;\dfrac{7}{6};\dfrac{8}{6};\dfrac{9}{6}\right\}\)
c) \(3,456< x\le7,89\)
\(\Rightarrow x\in\left\{3,456;3,457,3,458;...;7,89\right\}\)
d) \(5,82< \overline{5,8x0}< 8,845\)
\(\Rightarrow x\in\left\{3;4\right\}\)
e) \(32,82< \overline{3x,850}< 35,845\)
\(\Rightarrow x\in\left\{3;4\right\}\)