Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)\left(x+5\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\Rightarrow x>1\\x+5>0\Rightarrow x>-5\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\Rightarrow x< 1\\x+5< 0\Rightarrow x< -5\end{matrix}\right.\end{matrix}\right.\)
\(\left(x-1\right)\left(x+5\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\Rightarrow x>1\\x+5< 0\Rightarrow x< -5\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\Rightarrow x< 1\\x+5>0\Rightarrow x>-5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-5< x< 1\)
câu dễ tự làm
\(\Rightarrow x>-5;x< -5\)
Nhiều quá, từng bài 1 nhé, bài nào làm được, tớ sẽ cố gắng.
bài 2:
a) \(x>2x\Leftrightarrow x-2x>0\Leftrightarrow-x>0\Leftrightarrow x< 0\)
Kl: x<0
b) \(a+x< a\Leftrightarrow x< 0\)
Kl: x<0
c) \(x^3>x^2\Leftrightarrow x^3-x^2>0\Leftrightarrow x^2\left(x-1\right)>0\) (*)
Mà x^2 > 0 \(\Rightarrow\) (*) \(\Leftrightarrow x-1>0\Leftrightarrow x>1\)
Kl: x>1
Câu 4:
a) \(1-2x< 7\Leftrightarrow2x>-6\Leftrightarrow x>3\)
Kl: x>3
b) \(\left(x-1\right)\left(x-2\right)>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\x-2< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 1\\x< 2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>2\\x< 1\end{matrix}\right.\)
Kl: x>2 hoặc x<1
c) \(\left(x-2\right)^2\left(x+1\right)\left(x+4\right)< 0\Leftrightarrow\left(x+1\right)\left(x+4\right)< 0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1>0\\x+4< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1< 0\\x+4>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-1\\x< -4\end{matrix}\right.\\\left\{{}\begin{matrix}x< -1\\x>-4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-1< x< -4\left(vô-lý\right)\\-4< x< -1\end{matrix}\right.\) \(\Leftrightarrow-4< x< -1\)
Kl: -4<x<-1
d) ĐK: x khác 9\(\dfrac{x^2\left(x+3\right)}{x-9}< 0\Leftrightarrow x^2\left(x+3\right)\left(x-9\right)< 0\Leftrightarrow\left(x+3\right)\left(x-9\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3>0\\x-9< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\\x-9>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-3\\x< 9\end{matrix}\right.\\\left\{{}\begin{matrix}x< -3\\x>9\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-3< x< 9\left(N\right)\\9< x< -3\left(vô-lý\right)\end{matrix}\right.\) \(\Leftrightarrow-3< x< 9\)
Kl: -3<x<9
e) Đk: x khác 0
\(\dfrac{5}{x}< 1\Leftrightarrow\dfrac{5}{x}< \dfrac{5}{5}\Leftrightarrow x>5\left(N\right)\)
KL: x >5
f) ĐK: x khác 1
\(\dfrac{2x-5}{x-1}< 0\Leftrightarrow\left(2x-5\right)\left(x-1\right)< 0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-5>0\\x-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-5< 0\\x-1>0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{5}{2}\\x< 1\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x>1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{5}{2}< x< 1\left(vô-lý\right)\\1< x< \dfrac{5}{2}\left(N\right)\end{matrix}\right.\)
Kl: 1< x< 5/2
a: \(\left(2x+3\right)\left(3x-5\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5\ge0\\2x+3\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>=\dfrac{5}{3}\\x< =-\dfrac{3}{2}\end{matrix}\right.\)
b: \(\dfrac{x}{3-x}>-1\)
\(\Leftrightarrow\dfrac{x}{3-x}+1>0\)
\(\Leftrightarrow\dfrac{x+3-x}{3-x}>0\)
=>3-x>0
hay x<3
c: \(\dfrac{x-1}{x+5}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{x-1}{x+5}-\dfrac{3}{2}\ge0\)
\(\Leftrightarrow\dfrac{2x-2-3x-15}{2\left(x+5\right)}>=0\)
\(\Leftrightarrow\dfrac{x+17}{2\left(x+5\right)}< =0\)
=>-17<=x<-5
d: \(\dfrac{7}{4x^2-1}\ge0\)
=>4x2-1>0
=>(2x-1)(2x+1)>0
=>x>1/2 hoặc x<-1/2
a/ \(\left(x+1\right)\left(x-2\right)< 0\)
TH1:\(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\) (vô lý)
TH2:\(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\)\(\Rightarrow-1< x< 2\)
Vậy.........
b/ \(\left(x-3\right)\left(x-4\right)>0\)
TH1:\(\left\{{}\begin{matrix}x-3>0\\x-4>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>3\\x>4\end{matrix}\right.\)\(\Rightarrow x>4\)
TH2:\(\left\{{}\begin{matrix}x-3< 0\\x-4< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< 3\\x< 4\end{matrix}\right.\)\(\Rightarrow x< 3\)
Vậy...............
c/ \(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{1}{4}\right)< x< \dfrac{1}{48}-\left(\dfrac{1}{16}-\dfrac{1}{6}\right)\)
\(\Rightarrow\dfrac{1}{2}-\dfrac{7}{12}< x< \dfrac{1}{48}-\dfrac{1}{8}\)
\(\Rightarrow\dfrac{-1}{12}< x< -\dfrac{5}{48}\)
Vậy...............
Để ( x + 1 ) ( x - 2 ) < 0
=> x + 1 và x - 2 phải khác dấu mà x + 1 > x + 2
=> x + 1 dương x + 2 âm
Tức là x + 1 > 0 => x > - 1 và x - 2 < 0 => x < 2
a: 5x+2>3x-1
=>5x-3x>-1-2
=>2x>-3
hay x>-3/2
b: \(\dfrac{3}{4}x-\dfrac{1}{2}>\dfrac{1}{2}x+\dfrac{3}{4}\)
=>3/4x-1/2x>3/4+1/2
=>1/2x>5/4
hay x>5/4:1/2=5/2
c: (x-2)(x-3)>0
=>x-3>0 hoặc x-2<0
=>x>3 hoặc x<2
d: (2x+4)(x-5)<0
=>(x+2)(x-5)<0
=>-2<x<5
a, \(\left(x-3\right)\left(2x+5\right)>0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3>0\\2x+5>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3< 0\\2x+5< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>3\\x>-\dfrac{5}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 3\\x< -\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -\dfrac{5}{2}\end{matrix}\right.\)
b,\(\left(1-4x\right)\left(x-2\right)< 0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}1-4x>0\\x-2< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-4x< 0\\x-2>0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{1}{4}\\x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{1}{4}\\x>2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< 2\\x>2\end{matrix}\right.\)
c, \(\dfrac{-3}{x+2}< 0\Leftrightarrow x+2>0\Leftrightarrow x>-2\)
\(\text{a) }\left(x-1\right)\left(x-5\right)>0\\ \text{ Để }\left(x-1\right)\left(x-5\right)>0\text{ thì }\Rightarrow x-1\text{ và }x-5\text{ cùng dấu }\\ \text{+) Xét }x-1\text{ và }x-5\text{ là số nguyên dương }\Rightarrow\left\{{}\begin{matrix}x-1>0\Rightarrow x>1\\x-5>0\Rightarrow x>5\end{matrix}\right.\Rightarrow x>5\\ \text{+) Xét }x-1\text{ và }x-5\text{ là số nguyên âm }\Rightarrow\left\{{}\begin{matrix}x-1< 0\Rightarrow x< 1\\x-5< 0\Rightarrow x< 5\end{matrix}\right.\Rightarrow x< 1\\ \text{Vậy }\left(x-1\right)\left(x-5\right)>0\text{ khi }x< 1\text{ hoặc }x>5\)
\(\text{b) }\left(x-1\right)\left(x-5\right)< 0\\ \text{ Để }\left(x-1\right)\left(x-5\right)< 0\text{ thì }\Rightarrow x-1\text{ và }x-5\text{ trái dấu }\\ \text{ Mà }x-1>x-5\\ \Rightarrow\left\{{}\begin{matrix}x-1>0\Rightarrow x>1\\x-5< 0\Rightarrow x< 5\end{matrix}\right.\Rightarrow1< x< 5\\ \text{ Vậy }\left(x-1\right)\left(x-5\right)< 0\text{ khi }1< x< 5\)
\(\text{c) }\dfrac{3}{4}-\dfrac{1}{4}\left|x-\dfrac{1}{7}\right|=\dfrac{1}{4}\\ \Leftrightarrow\dfrac{1}{4}\left|x-\dfrac{1}{7}\right|=\dfrac{1}{2}\\ \Leftrightarrow\left|x-\dfrac{1}{7}\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{7}=-2\\x-\dfrac{1}{7}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{13}{7}\\x=\dfrac{15}{7}\end{matrix}\right.\\ \text{Vậy }x=-\dfrac{13}{7}\text{ hoặc }x=\dfrac{15}{7}\)
\(\text{d) }\left(x-\dfrac{1}{2}\right)^2=\dfrac{1}{16}\\ \Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=-\dfrac{1}{4}\\x-\dfrac{1}{2}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\\ \text{Vậy }x=\dfrac{1}{4}\text{ hoặc }x=\dfrac{3}{4}\)
\(\text{e) }8\left(x+1\right)-2\left(2x+5\right)=0\\ \Leftrightarrow8x+8-4x+10=0\\ \Leftrightarrow\left(8x-4x\right)+\left(8+10\right)=0\\ \Leftrightarrow4x+18=0\\ \Leftrightarrow4x=-18\\ \Leftrightarrow x=-\dfrac{9}{2}\\ \text{Vậy }x=-\dfrac{9}{2}\)
\(\text{g) }\left(6x-1\right)-\left(x+8\right)=0\\ \Leftrightarrow6x-1-x-8=0\\ \Leftrightarrow\left(6x-x\right)-\left(1+8\right)=0\\ \Leftrightarrow5x-9=0\\ \Leftrightarrow5x=9\\ \Leftrightarrow x=\dfrac{9}{5}\\ \text{Vậy }x=\dfrac{9}{5}\)
\(\text{h) }\left|7x-\dfrac{1}{4}\right|=1\\ \Leftrightarrow\left[{}\begin{matrix}7x-\dfrac{1}{4}=-1\\7x-\dfrac{1}{4}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7x=-\dfrac{3}{4}\\7x=\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{28}\\x=\dfrac{5}{28}\end{matrix}\right.\\ \text{Vậy }x=-\dfrac{3}{28}\text{ hoặc }x=\dfrac{5}{28}\)
\(\text{q) }-2x-3=-x+7\\ \Leftrightarrow-2x-3-\left(-x+7\right)=0\\ \Leftrightarrow-2x-3+x-7=0\\ \Leftrightarrow\left(-2x+x\right)-\left(3+7\right)=0\\ \Leftrightarrow-x-10=0\\ \Leftrightarrow-x=10\\ \Leftrightarrow x=-10\\ \text{ Vậy }x=-10\)
b: 2x-3<0
=>2x<3
hay x<3/2
c: \(\left(2x-4\right)\left(9-3x\right)>0\)
=>(x-2)(x-3)<0
=>2<x<3
d: \(\dfrac{2}{3}x-\dfrac{3}{4}>0\)
=>2/3x>3/4
hay x>9/8
1, a/ \(\left|x\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy .............
b/ \(\left|x\right|=3,12\Leftrightarrow\left[{}\begin{matrix}x=3,12\\x=-3,12\end{matrix}\right.\)
Vậy ...........
c/ \(\left|x\right|=0\Leftrightarrow x=0\)
Vậy ..........
d/ \(\left|x\right|=2\dfrac{1}{7}\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\dfrac{1}{7}\\x=-2\dfrac{1}{7}\end{matrix}\right.\)
Vậy ..............
2, a/ \(\left|x\right|=2,1\Leftrightarrow\left[{}\begin{matrix}x=2,1\\x=-2,1\end{matrix}\right.\)
Vậy ...........
b/ \(\left|x\right|=\dfrac{17}{9}\) ; \(x< 0\)
\(\Leftrightarrow x=-\dfrac{17}{9}\)
Vậy ..........
c/ \(\left|x\right|=1\dfrac{2}{5}\Leftrightarrow\left[{}\begin{matrix}x=1\dfrac{2}{5}\\x=-1\dfrac{2}{5}\end{matrix}\right.\)
Vậy ...........
d/ \(\left|x\right|=0,35\) ; \(x>0\Leftrightarrow x=0,35\)
3, a/ \(\left|x-1,7\right|=2,3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1,7=2,3\\x-1,7=-2,3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-0,6\end{matrix}\right.\)
Vậy ...........
b/ \(\left|x+\dfrac{3}{4}\right|-\dfrac{1}{3}=0\)
\(\Leftrightarrow\left|x+\dfrac{3}{4}\right|=\dfrac{1}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{3}{4}=\dfrac{1}{3}\\x+\dfrac{3}{4}=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5}{12}\\x=-\dfrac{13}{12}\end{matrix}\right.\)
Vậy ...........
mấy cái này đơn dãng vô cùng nhưng có đều bn ra đề dài quá nha
a) \(3x+4\ge7\Leftrightarrow3x\ge7-4\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\) vậy \(x\ge1\)
b) \(-5x+1< 11\Leftrightarrow-5x< 11-1\Leftrightarrow-5x< 10\Leftrightarrow x>\dfrac{10}{-5}\)
\(\Leftrightarrow x>-2\) vậy \(x>-2\)
c) \(\dfrac{5}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\) vậy \(x< 3\)
d) \(\dfrac{-7}{2-x}\ge0\Leftrightarrow2-x\le0\Leftrightarrow x\ge2\) vậy \(x\ge2\)
e) \(x^2+4x>0\Leftrightarrow x\left(x+4\right)>0\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x+4>0\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x+4< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x>-4\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x< -4\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< -4\end{matrix}\right.\) vậy \(x>0\) hoặc \(x< -4\)
f) \(\dfrac{x-2}{x-6}< 0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-2>0\\x-6>0\end{matrix}\right.\\\left[{}\begin{matrix}x-2< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x>6\end{matrix}\right.\\\left[{}\begin{matrix}x< 2\\x< 6\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>6\\x< 2\end{matrix}\right.\)
vậy \(x>6\) hoặc \(x< 2\)
g) \(\left(x-1\right)\left(x+2\right)\left(3-x\right)< 0\Leftrightarrow-\left[\left(x-1\right)\left(x+2\right)\left(x-3\right)\right]< 0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)>0\)
th1: 3 số hạng đều dương : \(\Leftrightarrow\left[{}\begin{matrix}x-1>0\\x+2>0\\x-3>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>1\\x>-2\\x>3\end{matrix}\right.\) \(\Rightarrow x>3\)
th2: 2 âm 1 dương : (vì trong 3 số hạng ta có : \(\left(x+2\right)\) lớn nhất \(\Rightarrow\left(x+2\right)\) dương)
\(\Leftrightarrow\left[{}\begin{matrix}x-1< 0\\x+2>0\\x-3< 0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>-2\\x< 3\end{matrix}\right.\) \(\Rightarrow-2< x< 1\)
vậy \(x>3\) hoặc \(-2< x< 1\)
h) \(\dfrac{x^2-1}{x}>0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2-1>0\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2-1< 0\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2>1\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}-1< x< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1\\-1< x< 0\end{matrix}\right.\) vậy \(x>1\) hoặc \(-1< x< 0\)
i) \(x^2+x-2< 0\Leftrightarrow x^2+x+\dfrac{1}{4}-\dfrac{9}{4}< 0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{9}{4}< 0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2< \dfrac{9}{4}\Leftrightarrow\dfrac{-3}{2}< \left(x+\dfrac{1}{2}\right)< \dfrac{3}{2}\Leftrightarrow-2< x< 1\)
vậy \(-2< x< 1\)
Mysterious Person, Đoàn Đức Hiếu, Nguyễn Đình Dũng , ... giúp mình!