Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sẽ tạo các tổng bình phương như sau:
\(PT\Leftrightarrow\left(4x^2-4x+1\right)+\left(9y^2-6y+1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(3y-1\right)^2=0\)(1)
Do \(\left(2x-1\right)^2\ge0;\left(3y-1\right)^2\ge0\Rightarrow\left(2x-1\right)^2+\left(3y-1\right)^2\ge0\)(2)
Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}2x-1=0\\3y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\end{cases}}}\)
Bài 1 :
Câu a : \(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\)
Câu b : \(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
Vậy \(GTNN\) của \(A\) là \(\dfrac{11}{4}\) . Dấu \("="\) xảy ra khi \(\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)
Bài 2 :
Câu a : \(x^2-6x+y^2-4y+13=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y-2\right)^2=0\)
Do : \(\left(x-3\right)^2\ge0\) and \(\left(y-2\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Vậy \(x=3\) and \(y=2\)
Câu b : \(4x^2-4x+y^2+6y+10=0\)
\(\Leftrightarrow\left(4x^2-4x+1\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(y+3\right)^2=0\)
Because the : \(\left(2x-1\right)^2\ge0\) and \(\left(y+3\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(2x-1\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{2}\) và \(y=-3\)
Ta co pt \(\Leftrightarrow x^2-4x+4+y^2+6y+9=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2=0\)
mà \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)
Nên dấu \(=\)xảy ra khi \(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)
Vậy \(x=2;y=-3\)
\(^{x^2-4x+4+y^2+6y+9=0}\)0
\(\left(x-2\right)^2+\left(y+3\right)^2=0\)
x=2 va y=-3
x2+y2-4x+6y+13=0
(x2-4x+4)+(y2+6y+9)=0
(x-2)2+(y+3)2=0
suy ra x-2=0 hoặc y+3=0
*x-2=0=>x=2 *y+3 =0=> y=-3
vậy x=2,y=-3
\(x^2+y^2-4x+6y+13=0\)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^3=0\)
Vì: \(\left(x-2\right)^2+\left(y+3\right)^3\ge0\forall x;y\)
=> ''='' xảy ra khi x = 2; y = -3
Vậy.........
Lời giải:
\(x^2+y^2-4x+6y+13=0\)
\(\Leftrightarrow (x^2-4x+4)+(y^2+6y+9)=0\)
\(\Leftrightarrow (x-2)^2+(y+3)^2=0\)
Vì \((x-2)^2; (y+3)^2\ge 0, \forall x,y\Rightarrow (x-2)^2+(y+3)^2\geq 0\)
Dấu "=" xảy ra khi \((x-2)^2=(y+3)^2=0\Leftrightarrow \left\{\begin{matrix} x=2\\ y=-3\end{matrix}\right.\)
\(x^2+y^2-4x+6y+13=0\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2=0\)
Mà ta lại có: \(\left(x-2\right)^2+\left(y+3\right)^2\ge0\left(\forall x;y\right)\)
\(\Rightarrow\left(x-2\right)^2=0;\left(y+3\right)^2=0\Leftrightarrow x=2;y=-3\)
x2 + y2 - 4x + 6y + 13 = 0
=> x2+y2-4x+6y+9+4=0
=> (x2-4x+4)+(y2+6y+9)=0
=> (x-2)2+(y+3)2=0
=> \(\left[{}\begin{matrix}x-2=0\\y+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
vậy x=2,y=-3
(x2-4x+4) + (y2+6y+9) = 0
bạn làm tiếp nhé, dáp số x=2, y=-3