K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

đk: x khác 2

\(\dfrac{2x-1}{2-x}>1\Leftrightarrow\dfrac{2x-1}{2-x}-1>0\Leftrightarrow\dfrac{x-3}{2-x}>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3< 0\\2-x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3>0\\2-x>0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 3\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x>3\\x< 2\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2< x< 3\\\left(?\right)\end{matrix}\right.\)

(?) : không tồn tại x thỏa mãn {bạn thay vào dấu trên kia}

Vậy S={x|2<x<3}

-------------------------------------------------------

Alpha Phương Hoa : Cảm ơn nhiều nha ^^! vuihahayeu

8 tháng 5 2017

đk: x khác 2

\(\dfrac{2x-1}{2-x}>1\Leftrightarrow2x-1>2-x\Leftrightarrow3x>3\Leftrightarrow x>1\)

Vậy S={x|x>1; x khác 2}

a: \(A=\dfrac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{2-x}{x}\)

\(=\dfrac{4x}{\left(x+2\right)}\cdot\dfrac{-1}{x}=\dfrac{-4}{x+2}\)

b: 2x^2+x=0

=>x(2x+1)=0

=>x=0(loại) hoặc x=-1/2(nhận)

Khi x=-1/2 thì \(A=-4:\left(-\dfrac{1}{2}+2\right)=-4:\dfrac{3}{2}=-4\cdot\dfrac{2}{3}=-\dfrac{8}{3}\)

c: Để A=1/2 thì -4/x+2=1/2

=>x+2=-2

=>x=-4

a: \(B=\dfrac{21+x^2-x-12-x^2+4x-3}{\left(x+3\right)\left(x-3\right)}:\dfrac{x+3-1}{x+3}\)

\(=\dfrac{3x+6}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{x+3}{x+2}\)

\(=\dfrac{3}{x-3}\)

b: |2x+1|=5

=>2x+1=5 hoặc 2x+1=-5

=>x=-3(loại) hoặc x=2(nhận)

Khi x=2 thì \(B=\dfrac{3}{2-3}=-3\)

c: Để B=-3/5 thì x-3=-5

=>x=-2(loại)

d: Để B<0 thì x-3<0

=>x<3

14 tháng 5 2017

x2+2y2-2xy-2y-2x+5=0

<=>(x2-2xy+y2-2x+2y+1)+(y2-4y+4)=0

<=>(x-y-1)2+(y-2)2=0

Do (x-y-1)2\(\ge\)0

(y-2)2\(\ge\)0

=>Phương trình tương đương \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)

14 tháng 5 2017

\(x^2+2y^2-2xy-2y-2x+5=0\)

\(\Leftrightarrow\left(x^2-2xy-2x+y^2+2y+1\right)+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(y-2\right)^2=0\)

Dễ thấy: \(\left\{{}\begin{matrix}\left(x-y-1\right)^2\ge0\ge x,y\\\left(y-2\right)^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x-y-1\right)^2+\left(y-2\right)^2\ge0\forall x,y\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\left(x-y-1\right)^2=0\\\left(y-2\right)^2=0\forall\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

1 tháng 9 2016

Ta có \(\sqrt{1+a^4}+\sqrt{1+b^4}\ge\)\(\ge\)\(\sqrt{2^2+\left(a^2+b^2\right)^2}\)(1)

Ta lại có \(\frac{a^2+b^2}{2}\ge ab\)

\(\frac{a^2+1}{2}\ge a\)

\(\frac{b^2+1}{2}\ge b\)

Từ đó => a+ b\(\ge\)a + b + ab - 1 = \(\frac{1}{4}\)

Thế vào 1 ta được P \(\ge\)\(\frac{\sqrt{65}}{4}\)

\(\frac{9}{4}=\left(a+1\right)\left(b+1\right)\le\frac{\left(a+1\right)^2+\left(b+1\right)^2}{2}=\frac{2\left(a^2+1\right)+2\left(b^2+1\right)}{2}=a^2+b^2+2.\)

\(\Rightarrow a^2+b^2\ge\frac{1}{4}\)

\(\sqrt{1+a^4}+\sqrt{1+b^4}\ge\sqrt{\left(1+1\right)^2+\left(a^2+b^2\right)^2}\ge\sqrt{4+\left(\frac{1}{4}\right)^2}=\frac{\sqrt{17}}{2}\)

12 tháng 7 2019

Ta có: \(\left(2x-y\right)^2\ge0\); \(\left(y-2\right)^2\ge0\); \(\sqrt{\left(x+y+z\right)^2}=\left|x+y+z\right|\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}2x-y=0\\y-2=0\\x+y+z=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=?\\y=?\\z=?\end{matrix}\right.\)

Bạn tự giải :D

13 tháng 2 2018

theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)

A=\(\dfrac{x-y}{x+y}\)

=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)

=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)

vì y>x>0=> A=-1/2

17 tháng 6 2018

Giải:

Ta có:

\(P=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\)

\(\Leftrightarrow P=\dfrac{1}{2}\left[\left(\dfrac{xy}{z}+\dfrac{yz}{x}\right)+\left(\dfrac{yz}{x}+\dfrac{zx}{y}\right)+\left(\dfrac{zx}{y}+\dfrac{xy}{z}\right)\right]\)

Áp dụng BĐT AM-GM, có:

\(P=\dfrac{1}{2}\left[\left(\dfrac{xy}{z}+\dfrac{yz}{x}\right)+\left(\dfrac{yz}{x}+\dfrac{zx}{y}\right)+\left(\dfrac{zx}{y}+\dfrac{xy}{z}\right)\right]\ge\dfrac{1}{2}.\left(2\sqrt{\dfrac{xy}{z}.\dfrac{yz}{x}}+2\sqrt{\dfrac{yz}{x}.\dfrac{zx}{y}}+2\sqrt{\dfrac{zx}{y}.\dfrac{xy}{z}}\right)\)

\(\Leftrightarrow P\ge\sqrt{\dfrac{xy}{z}.\dfrac{yz}{x}}+\sqrt{\dfrac{yz}{x}.\dfrac{zx}{y}}+\sqrt{\dfrac{zx}{y}.\dfrac{xy}{z}}\)

\(\Leftrightarrow P\ge x+y+z\)

\(\Leftrightarrow P\ge2019\)

\(\Leftrightarrow P_{Min}=2019\)

\("="\Leftrightarrow x=y=z=\dfrac{2019}{3}\)

Vậy ...

\(\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\left(\dfrac{x+1}{3x}-x-1\right)\right):\dfrac{x-1}{x}\)

\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x\left(x+1\right)}{3x}\right)\cdot\dfrac{x}{x-1}\)

\(=\dfrac{2x+2-2\left(x+1\right)\left(1-3x\right)}{3x}\cdot\dfrac{x}{x-1}\)

\(=\dfrac{2\left(x+1\right)-2\left(x+1\right)\left(1-3x\right)}{3}\cdot\dfrac{x}{x-1}\)

\(=\dfrac{2\left(x+1\right)\left(1-1+3x\right)}{3}\cdot\dfrac{x}{x-1}\)

\(=\dfrac{6x\left(x+1\right)}{3}\cdot\dfrac{x}{x-1}=\dfrac{2x^2\left(x+1\right)}{x-1}\)

31 tháng 10 2016

Thật ra bài này là một câu trắc nghiệm thôi và mình muốn có lời giải rõ ràng. Có 4 đáp án các bạn chọn và giải rõ ràng ra nhé.

Hệ số k tốt nhất là:

A. \(\frac{1}{2}\)

B. \(\frac{1}{3}\)

C.  \(\frac{1}{4}\)

D. \(\frac{1}{5}\)

1 tháng 11 2016

K biết

...........

...