K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2017

a, dễ, tự làm

b, \(\dfrac{3x}{2.5}+\dfrac{3x}{5.8}+.........+\dfrac{3x}{11.14}=\dfrac{1}{21}\)

\(\Leftrightarrow x\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+.........+\dfrac{3}{11.14}\right)=\dfrac{1}{21}\)

\(\Leftrightarrow x\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+.....+\dfrac{1}{11}-\dfrac{1}{14}\right)=\dfrac{1}{21}\)

\(\Leftrightarrow x\left(\dfrac{1}{2}-\dfrac{1}{14}\right)=\dfrac{1}{21}\)

\(\Leftrightarrow x.\dfrac{3}{7}=\dfrac{1}{21}\)

\(\Leftrightarrow x=\dfrac{1}{9}\)

Vậy ...

30 tháng 8 2017

a) (x-2)3 = (x-2)2

<=> (x-2)3-(x-2)2 = 0

<=> (x-2)2(x-2-1) = 0

<=> \(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\x-3=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

b) \(\dfrac{3x}{2.5}+\dfrac{3x}{5.8}+...+\dfrac{3x}{11.14}=\dfrac{1}{21}\)

<=> \(x\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+...+\dfrac{3}{11.14}\right)=\dfrac{1}{21}\)

<=> \(x\left(\dfrac{1}{2}-\dfrac{1}{14}\right)=\dfrac{1}{21}\)

<=> \(x=\dfrac{1}{21}:\dfrac{3}{7}\)

<=> \(x=\dfrac{1}{9}\)

4 tháng 4 2022

\(x\) \((\)\(\dfrac{3}{2.5}\) \(+ \) \(\dfrac{3}{5.8}\) \(+\) \(\dfrac{3}{8.11}\) \(+\) \(\dfrac{3}{11.14}\)\()\) \(=\) \(\dfrac{1}{21}\)
\(x\) \((\)\(\dfrac{1}{2}\) \(-\) \(\dfrac{1}{5}\) \(+\) \(\dfrac{1}{5}\) \(-\) \(\dfrac{1}{8}\) \(+\) \(\dfrac{1}{8}\) \(-\) \(\dfrac{1}{11}\) \(+\) \(\dfrac{1}{11}\) \(-\) \(\dfrac{1}{14}\)\()\) \(=\) \(\dfrac{1}{21}\)
\(x\) \((\)\(\dfrac{1}{2}\) \(-\) \(\dfrac{1}{14}\)\()\) \(=\) \(\dfrac{1}{21}\)
\(x\) x \(\dfrac{3}{7}\) \(=\) \(\dfrac{1}{21}\)
\(x\)        \(=\) \(\dfrac{1}{21}\) \(:\) \(\dfrac{3}{7}\) 
\(x\)        \(=\) \(\dfrac{1}{9}\)

 

Bài 1: 

a: =>13x+8=9x+20

=>4x=12

hay x=3

b: \(\Leftrightarrow5x-7=-8-11-3x\)

=>5x-7=-3x-19

=>8x=-12

hay x=-3/2

c: \(\Leftrightarrow\left[{}\begin{matrix}12x-7=5\\12x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{6}\end{matrix}\right.\)

e: =>3x+1=-5

=>3x=-6

hay x=-2

14 tháng 5 2017

\(\dfrac{3x}{2.5}+\dfrac{3x}{5.8}+\dfrac{3x}{8.11}+\dfrac{3x}{11.14}=\dfrac{1}{21}\)

\(\Rightarrow x\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}\right)=\dfrac{1}{21}\)

\(\Rightarrow x\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}\right)=\dfrac{1}{21}\)

\(\Rightarrow x\left(\dfrac{1}{2}-\dfrac{1}{14}\right)=\dfrac{1}{21}\)

\(\Rightarrow x.\dfrac{3}{7}=\dfrac{1}{21}\)

\(\Rightarrow x=\dfrac{1}{21}.\dfrac{7}{3}\)

\(\Rightarrow x=\dfrac{1}{9}\)

Vậy \(x=\dfrac{1}{9}\)

14 tháng 5 2017

cậu giỏi thật đấy!

16 tháng 5 2018

3) \(\left(x+\dfrac{1}{5}\right)^2\) + \(\dfrac{17}{25}\) = \(\dfrac{26}{25}\)

=> \(\left(x+\dfrac{1}{5}\right)^2\) = \(\dfrac{26}{25}\) - \(\dfrac{17}{25}\)

=> \(\left(x+\dfrac{1}{5}\right)^2\) = \(\dfrac{9}{25}\)

=> \(\left(x+\dfrac{1}{5}\right)^2\) = \(\dfrac{3}{5}.\dfrac{3}{5}\)

=> \(\left(x+\dfrac{1}{5}\right)^2\) = \(\left(\dfrac{3}{5}\right)^2\)

=> \(x\) + \(\dfrac{1}{5}\) = \(\dfrac{3}{5}\)

=> \(x\) = \(\dfrac{3}{5}\) - \(\dfrac{1}{5}\)

=> \(x\) = \(\dfrac{2}{5}\)

16 tháng 5 2018

4) -1\(\dfrac{5}{27}\) - \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-24}{27}\)

=> \(\dfrac{-32}{27}\) - \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-8}{9}\)

=> \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-32}{27}\) - \(\dfrac{-8}{9}\)

=> \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-8}{27}\)

=> \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-2}{3}\) . \(\dfrac{-2}{3}\) . \(\dfrac{-2}{3}\)

=> \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\left(\dfrac{-2}{3}\right)^3\)

=> \(3x-\dfrac{7}{9}=\dfrac{-2}{3}\)

=> \(3x=\dfrac{-2}{3}+\dfrac{7}{9}\)

=> \(3x=\dfrac{1}{9}\)

=> \(x=\dfrac{1}{9}:3\)

=> \(x=\dfrac{1}{27}\)

17 tháng 8 2017

a, \(\dfrac{x-2}{5}=\dfrac{x}{3}\)

\(\Leftrightarrow3\left(x-2\right)=5x\)

\(\Leftrightarrow3x-6=5x\)

\(\Leftrightarrow5x-3x=6\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\)

b, \(\dfrac{x+23}{x+40}=\dfrac{3}{4}\)

\(\Leftrightarrow4\left(x+23\right)=3\left(x+40\right)\)

\(\Leftrightarrow4x+92=2x+80\)

\(\Leftrightarrow4x-2x=80-92\)

\(\Leftrightarrow2x=-12\)

\(\Leftrightarrow x=-6\)

c, \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...........+\dfrac{1}{2^{2017}}\)

\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...........+\dfrac{1}{2^{2016}}\)

\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{2016}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{2017}}\right)\)

\(\Leftrightarrow A=1-\dfrac{1}{2^{2017}}\)

d, \(B=1+2+2^2+........+2^{2017}\)

\(\Leftrightarrow2B=2+2^2+2^3+......+2^{2018}\)

\(\Leftrightarrow2B-B=\left(2+2^2+.....+2^{2018}\right)-\left(1+2+....+2^{2017}\right)\)

\(\Leftrightarrow B=2^{2018}-1\)

17 tháng 8 2017

\(\dfrac{x-2}{5}=\dfrac{x}{3}=>3\left(x-2\right)=5x\)

\(< =>3x-6=5x=>x=-3\)

\(\dfrac{x+23}{x+40}=\dfrac{3}{4}=>4\left(x+23\right)=3\left(x+40\right)\)

\(4x+92=3x+120=>x=28\)

17 tháng 8 2017

\(\dfrac{x-2}{5}=\dfrac{x}{3}\)

\(\Leftrightarrow\left(x-2\right)3=5x\)

\(\Leftrightarrow3x-6=5x\)

\(\Leftrightarrow5x-3x=-6\)

\(\Leftrightarrow2x=-6\)

\(\Leftrightarrow x=-3\)

Vậy .....

b, \(B=1+2+2^2+..........+2^{2017}\)

\(\Leftrightarrow2B=2+2^2+.......+2^{2018}\)

\(\Leftrightarrow2B-B=\left(2+2^2+......+2^{2018}\right)-\left(1+2+......+2^{2017}\right)\)

\(\Leftrightarrow B=2^{2018}-1\)

c, \(\dfrac{x+23}{x+40}=\dfrac{3}{4}\)

\(\Leftrightarrow4\left(x+23\right)=3\left(x+40\right)\)

\(\Leftrightarrow4x+92=3x+120\)

\(\Leftrightarrow4x-3x=120-92\)

\(\Leftrightarrow x=28\)

27 tháng 3 2017

2. Tính:

a, \(\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\)

=\(\left(\dfrac{-1}{20}+\dfrac{-1}{72}\right)+\left(\dfrac{-1}{30}+\dfrac{-1}{90}\right)+\left(\dfrac{-1}{42}+\dfrac{-1}{56}\right)\)

=\(\left(\dfrac{-18}{360}+\dfrac{-5}{360}\right)+\left(\dfrac{-3}{90}+\dfrac{-1}{90}\right)+\left(\dfrac{-4}{168}+\dfrac{-3}{168}\right)\)

=\(\dfrac{-23}{360}+\dfrac{-4}{90}+\dfrac{-7}{168}\)

=\(\dfrac{-23}{360}+\dfrac{-16}{360}+\dfrac{-15}{360}\)=\(\dfrac{-54}{360}=\dfrac{-3}{20}\)

b, \(\dfrac{5}{2.1}+\dfrac{4}{1.11}+\dfrac{3}{11.2}+\dfrac{1}{2.15}+\dfrac{13}{15.4}\)

=\(\dfrac{5}{2}+\dfrac{4}{1}.\dfrac{1}{11}+\dfrac{1}{11}.\dfrac{3}{2}+\dfrac{1}{2}.\dfrac{1}{15}+\dfrac{1}{15}.\dfrac{13}{4}\)

=\(\dfrac{5}{2}+\dfrac{1}{11}.\left(\dfrac{4}{1}+\dfrac{3}{2}\right)+\dfrac{1}{15}.\left(\dfrac{1}{2}+\dfrac{13}{4}\right)\)

=\(\dfrac{5}{2}+\dfrac{1}{11}.\dfrac{11}{2}+\dfrac{1}{15}.\dfrac{15}{4}\)

=\(\dfrac{5}{2}+\dfrac{1}{2}+\dfrac{1}{4}\)

=\(\dfrac{10}{4}+\dfrac{2}{4}+\dfrac{1}{4}\)

=\(\dfrac{13}{4}\)

27 tháng 3 2017

3. Tìm x

a, \(\dfrac{x-5}{8}=\dfrac{18}{x-5}\)

\(\left(x-5\right).\left(x-5\right)=8.18\)

\(\left(x-5\right)^2=144\)

\(x-5=\sqrt{144}\)

\(x-5=12\)

\(x=12+5\)

\(x=17\)

b,\(\left(x-2\right)^{10}=\left(2-x\right)^8\)

\(x^{10}-2^{10}=x^8-2^8\)

\(x^{10}+x^8=2^{10}+2^8\)

\(\Rightarrow x=2\)

19 tháng 3 2017

khó quáhuhu

20 tháng 3 2017

Cho x, y là các số nguyên thoả mãn \(\left(1\right)\)

Theo bài ra ra thấy:

\(159\)\(3x\) đều \(⋮\) \(3\)

\(\Rightarrow17y⋮3\Rightarrow y⋮3\)

Cho y = 3t (\(t\in Z\))

Thay vào \(\left(1\right)\), ta được:

\(3x+17.3t=159\)

\(\Leftrightarrow x+17t=53\)

\(\Rightarrow x=53-17t\)

\(\Rightarrow\left\{{}\begin{matrix}x=53-17t\\y=3t\end{matrix}\right.\left(t\in Z\right)\)

Vậy 1 có vô số \(\left(x,y\right)\in Z\) được tạo ra bởi:

\(\Rightarrow\left\{{}\begin{matrix}x=53-17t\\y=3t\end{matrix}\right.\left(t\in Z\right)\)