\(\frac{4x-5}{2x+4}\) nhận giá trị nguyên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2016

Ta có:\(\frac{4x-5}{2x+4}=\frac{4x+8-13}{2x+4}=\frac{2\left(2x+4\right)-13}{2x+4}=2-\frac{13}{2x+4}\)

Để \(\frac{4x-5}{2x+4}\in Z\)thì \(\frac{13}{2x+4}\in Z\)

=>13 chia hết cho 2x+4

=>2x+4\(\in\)Ư(13)={-13,-1,1,13}

Mà 2x+4 là số chẵn nên không có x thỏa mãn

26 tháng 7 2016

Bài 1

a)Để A thuộc Z

=>-3 chia hết 2x-1

=>2x-1 thuộc Ư(-3)={1;-1;3;-3}

=>x thuộc {1;0;-1;2}

b)Để B thuộc Z

=>4x+5 chia hết 2x-1

=>2(2x-1)+7 chia hết 2x-1

Ta thấy: 2x-1 chia hết 2x-1 =>2(2x-1) cũng chia hết 2x-1

=>7 chia hết 2x-1

=>2x-1 thuộc Ư(7)={1;-1;7;-7}

=>x thuộc {1;0;-3;4}

26 tháng 7 2016

Bài 1

a)Để A thuộc Z

=>-3 chia hết 2x-1

=>2x-1 thuộc Ư(-3)={1;-1;3;-3}

=>x thuộc {1;0;-1;2}

b)Để B thuộc Z

=>4x+5 chia hết 2x-1

=>2(2x-1)+7 chia hết 2x-1

Ta thấy: 2x-1 chia hết 2x-1 =>2(2x-1) cũng chia hết 2x-1

=>7 chia hết 2x-1

=>2x-1 thuộc Ư(7)={1;-1;7;-7}

=>x thuộc {1;0;-3;4}

23 tháng 3 2019

B=\(\frac{2x-5}{x-1}\)

24 tháng 3 2019

Để \(A\inℤ\) thì \(\left(4x-6\right)⋮\left(2x+1\right)\)

\(\Leftrightarrow\left(4x+2-8\right)⋮\left(2x+1\right)\)

\(\Leftrightarrow\left[2\left(2x+1\right)+8\right]⋮\left(2x+1\right)\)

Vì \(\left[2\left(2x+1\right)\right]⋮\left(2x+1\right)\) nên \(8⋮\left(2x+1\right)\)

\(\Rightarrow2x+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Mà 2x + 1 lẻ nên \(\Rightarrow2x+1\in\left\{\pm1\right\}\)

Lập bảng:

\(2x+1\)\(-1\)1\(\)
\(x\)\(-1\)\(0\)

Vậy \(x\in\left\{-1;0\right\}\)

B,C,E tương tự

27 tháng 9 2016

a) Đặt \(A=\frac{x}{x+3}=\frac{x+3-3}{x+3}=\frac{x+3}{x+3}-\frac{3}{x+3}=1-\frac{3}{x+3}\)

Để A nguyên thì \(\frac{3}{x+3}\) nguyên => \(3⋮x+3\)

=> \(x+3\in\left\{1;-1;3;-3\right\}\)

=> \(x\in\left\{-2;-4;0;-6\right\}\)

Vậy \(x\in\left\{-2;-4;0;-6\right\}\)

b) Đặt \(B=\frac{x-1}{2x+1}\)

Để B nguyên thì 2B nguyên

Ta có:

\(2B=\frac{2.\left(x-1\right)}{2x+1}=\frac{2x-2}{2x+1}=\frac{2x+1-3}{2x+1}=\frac{2x+1}{2x+1}-\frac{3}{2x+1}=1-\frac{3}{2x+1}\)

Để 2B nguyên thì \(\frac{3}{2x+1}\) nguyên => \(3⋮2x+1\)

=> \(2x+1\in\left\{1;-1;3;-3\right\}\)

=> \(2x\in\left\{0;-2;2;-4\right\}\)

=> \(x\in\left\{0;-1;1;-2\right\}\)

Vậy \(x\in\left\{0;-1;1;-2\right\}\)

30 tháng 6 2016

Để B là 1 phân số nguyên

\(\Rightarrow x-1\ne0\)

\(\Rightarrow x\ne1\).Vậy mọi x khác 1 đều thỏa mãn

Để C là 1 phân số nguyên

\(\Rightarrow2x-1\ne0\)

\(\Rightarrow2x\ne1\)

\(\Rightarrow x\ne\frac{1}{2}\).Vậy...

Tương tự

19 tháng 7 2020

a) \(A=\frac{4}{n-3}\)

Để A nguyên => \(\frac{4}{n-3}\)nguyên

=> \(4⋮n-3\)

=> \(n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n-31-12-24-4
n42517-1

Vậy n thuộc các giá trị trên 

b) \(B=\frac{2n-1}{n+5}=\frac{2\left(n+5\right)-11}{n+5}=2-\frac{11}{n+5}\)

Để B nguyên => \(\frac{11}{n+5}\)nguyên

=> \(11⋮n+5\)

=> \(n+5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

n+51-111-11
n-4-66-16

Vậy n thuộc các giá trị trên 

19 tháng 7 2020

a) Để A nguyên thì 4 chia hết cho n-3

nên n thuộc:(4, 2,-1,5,1)

b) ta có B=\(\frac{2n+10-10-1}{n+5}\)=\(\frac{2.\left(n+5\right)-11}{n+5}\)=2-\(\frac{11}{n+5}\)

Để B nguyên =>11 chia hết cho n+5

=> n thuộc (6,-4,-16,-6)