Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}\)
b) \(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)
Để A đạt giá trị nguyên thì \(\frac{4}{n-3}\)đạt giá trị nguyên <=> \(n-3\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Tới đây lập bảng tìm n.
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
\(\frac{15}{n}\)nhận giá trị nguyên <=>n thuộc Ư(15)
<=>n thuộc {1; -1; 3; -3; 5; -5; 15; -15}
Vậy \(\frac{15}{n}\)đạt giá trị nguyên <=>n thuộc {1; -1; 3; -3; 5; -5; 15; -15}
Để 3 phân số trên nhận giá trị nguyên thì
n\(\in\)Ư(15)=>n={\(\pm\)1;\(\pm\)3;\(\pm\)5;\(\pm\)15}
n+2\(\in\)Ư(12)
2n-5\(\in\)Ư(6)
=>n=\(\pm\)1;\(\pm\)3,...
A = \(\frac{2n+3}{n-3}+\frac{3n-5}{n-3}+\frac{4n-5}{n-3}=\frac{2n+3+3n-5+4n-5}{n-3}=\frac{9n-7}{n-3}=\frac{9n-27+20}{n-3}=\frac{9\left(n-3\right)+20}{n-3}=9+\frac{20}{n-3}\)
a, Để A nguyên <=> n - 3 thuộc Ư(20) = {1;-1;2;-2;4;-4;5;-5;10;-10;20;-20}
n-3 | 1 | -1 | 2 | -2 | 4 | -4 | 5 | -5 | 10 | -10 | 20 | -20 |
n | 4 | 2 | 5 | 1 | 7 | -1 | 8 | -2 | 13 | -7 | 23 | -17 |
Vậy...
b, Để A tối giản <=> UCLN(20,n-3) = 1
=> n-3 không chia hết cho 20
=> n-3 khác 20k (k thuộc Z)
=> n khác 20k + 3
Vậy.....
a) Ta có :
\(A=\frac{2n+3}{n-3}+\frac{3n-5}{n-3}+\frac{4n-5}{n-3}=\frac{\left(2n+3\right)+\left(3n-5\right)+\left(4n-5\right)}{n-3}=\frac{7n-7}{n-3}=\frac{7n-21+14}{n-3}=\frac{7\left(n-3\right)+14}{n-3}=7+\frac{14}{n-3}\)để A là số nguyên thì \(\frac{14}{n-3}\)là số nguyên
\(\Rightarrow14\)\(⋮\)\(n-3\)
\(\Rightarrow\)n - 3 \(\in\)Ư ( 14 ) = { 1 ; -1 ; 2 ; -2 ; 7 ; -7 ; 14 ; -14 }
lập bảng ta có :
n - 3 | 1 | -1 | 2 | -2 | 7 | -7 | 14 | -14 |
n | 4 | 2 | 5 | 1 | 10 | -4 | 17 | -11 |
b) Để A là phân số tối giản \(\Leftrightarrow\)ƯCLN ( 7n - 7 ; n - 3 ) = 1 \(\Leftrightarrow\)ƯCLN ( 14 ; n - 3 ) = 1
\(\Leftrightarrow\)n - 3 không chia hết cho 14
\(\Rightarrow\)n - 3 \(\ne\)14k
\(\Rightarrow\)n \(\ne\)14k + 3
a) \(A=\frac{4}{n-3}\)
Để A nguyên => \(\frac{4}{n-3}\)nguyên
=> \(4⋮n-3\)
=> \(n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Vậy n thuộc các giá trị trên
b) \(B=\frac{2n-1}{n+5}=\frac{2\left(n+5\right)-11}{n+5}=2-\frac{11}{n+5}\)
Để B nguyên => \(\frac{11}{n+5}\)nguyên
=> \(11⋮n+5\)
=> \(n+5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Vậy n thuộc các giá trị trên
a) Để A nguyên thì 4 chia hết cho n-3
nên n thuộc:(4, 2,-1,5,1)
b) ta có B=\(\frac{2n+10-10-1}{n+5}\)=\(\frac{2.\left(n+5\right)-11}{n+5}\)=2-\(\frac{11}{n+5}\)
Để B nguyên =>11 chia hết cho n+5
=> n thuộc (6,-4,-16,-6)