Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2>0\forall x\in R\)
\(\Rightarrow\sqrt{x^2+2x+3}\) xác định với mọi x
Nhìn mãi mới hiểu cái đề bài @-@
`a)đk:` $\begin{cases}\sqrt{x^2-2x} \ge 0\\x+\sqrt{x^2-2x} \ne 0\\x-\sqrt{x^2-2x} ne 0\\\end{cases}$
`<=>` $\begin{cases}x \ge 2\,or\,x<0\\x \ne 0\end{cases}$
`b)A=(x+sqrt{x^2-2x})/(x-sqrt{x^2-2x})-(x-sqrt{x^2-2x})/(x+sqrt{x^2+2x})`
`=((x+sqrt{x^2-2x})^2-(x-sqrt{x^2-2x})^2)/((x+sqrt{x^2-2x})(x-sqrt{x^2-2x}))`
`=(x^2+x^2-2x+2sqrt{x^2-2x}-x^2-x^2+2x+2sqrt{x^2-2x})/(x^2-x^2+2x)`
`=(4sqrt{x^2-2x})/(2x)`
`=(2sqrt{x^2-2x})/x`
`c)A<2`
`<=>2sqrt{x^2-2x}<2x`
`<=>sqrt{x^2-2x}<x(x>=2)`(BP 2 vế thì x>=2)
`<=>x^2-2x<x^2`
`<=>2x>0`
`<=>x>0`
`<=>x>=2`
Vậy `x>=2` thì `A<2`.
\(a,ĐK:\dfrac{3x-2}{5}\ge0\Leftrightarrow3x-2\ge0\left(5>0\right)\Leftrightarrow x\ge\dfrac{2}{3}\\ b,ĐK:\dfrac{2x-3}{-3}\ge0\Leftrightarrow2x-3\le0\left(-3< 0\right)\Leftrightarrow x\le\dfrac{3}{2}\)
a: ĐKXĐ: -3/(1-2x)>=0
=>1-2x>0
=>2x<1
=>x<1/2
b: ĐKXĐ: 2x+5/24>=0
=>2x>=-5/24
=>x>=-5/48
c: ĐKXĐ: 2x-16>=0 và x-8<>0
=>x>8
a) Để căn thức sqrt(-3/(1-2x)) có nghĩa, ta cần điều kiện:
1 - 2x > 0 (mẫu số không được bằng 0)
=> 1 > 2x
=> x < 1/2
b) Để căn thức sqrt((2x+5)/24) có nghĩa, ta cần điều kiện:
2x + 5 ≥ 0 (tử số không được âm)
=> 2x ≥ -5
=> x ≥ -5/2
c) Để căn thức sqrt(2x-16) + (x-3)/(x-8) có nghĩa, ta cần thỏa mãn hai điều kiện:
2x - 16 ≥ 0 (căn thức không được âm)
=> 2x ≥ 16
=> x ≥ 8
x ≠ 8 (mẫu số của phân số không được bằng 0)
Vậy, kết hợp hai điều kiện trên, ta có x > 8 và x ≠ 8. Tức là x > 8.
\(a,\)\(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}\)
\(đkxđ\Leftrightarrow\sqrt{\left(x-1\right)^2}\ge0\)
\(\Rightarrow x-1\ge0\Rightarrow x\ge1\)
\(b,\)\(\sqrt{x+3}+\sqrt{x+9}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+3\ge0\\x+9\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-3\\x\ge-9\end{cases}}}\)
\(\Rightarrow x\ge-3\)
\(c,\)\(\sqrt{\frac{x-1}{x+2}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+2\ne0\\\frac{x-1}{x+2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-2\\\frac{x-1}{x+2}\ge0\end{cases}}}\)
\(\frac{x-1}{x+2}\ge0\)\(\Rightarrow\orbr{\begin{cases}x-1\ge0;x+2>0\\x-1\le0;x+2< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-1;x>-2\\x\le1;x< 2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-1\\x< 2\end{cases}}\)
Vậy căn thức xác định khi x \(\ge\)-1 hoawck x < 2
ĐKXĐ:
\(2x-18\ge0\)
\(\Rightarrow x\ge9\)
ĐKXĐ: \(x\ge9\)