Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3,2.x+(-1,2).x+2,7=-4,9
=> x(-1,2+3,2)=-4,9-2,7
=> x.2=-7,6
=>x=-7,6:2=-3,8
tìm x biết
3,2.x+(-1,2).x+2,7=-4,9
-5,6.x+2,9.x-3,86=-9,8
giúp mình nha mai mình kiểm tra 1 tiết ròi
3,2.x + (-1,2).x +2,7= -4,9
<=> 3,2.x -1,2.x = -4,9 -2,7
<=> 2.x = -7,6
<=> x= -3,8
-5,6.x +2,9.x -3,86 = 9,8
<=> -5,6.x + 2,9.x = 9,8 + 3,86
<=> -2,7.x = -5,94
<=> x = 2,2
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{7}{7}=1\)
\(\frac{x}{2}=1\Rightarrow x=2\)
\(\frac{y}{-5}=1\Rightarrow y=-5\)
Chúc bạn học tốt ^^
Vì x:2=y:(-5)
Suy ra:\(\frac{x}{2}=\frac{y}{-5}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
\(\Rightarrow\begin{cases}\frac{x}{2}=-1\\\frac{y}{-5}=-1\end{cases}\)\(\Rightarrow\begin{cases}x=-2\\y=5\end{cases}\)
Vậy x=-2;y=5
\(3x-\left|2x+1\right|=2\)
\(\Rightarrow\left|2x+1\right|=3x-2\)
Thấy: \(VT\ge0\Rightarrow VP\ge0\Rightarrow3x-2\ge0\Rightarrow x\ge\frac{2}{3}\)
\(\left(\left|2x+1\right|\right)^2=\left(3x-2\right)^2\)
\(\Rightarrow4x^2+4x+1=9x^2-12x+4\)
\(\Rightarrow-5x^2+16x-3=0\)
\(\Rightarrow15x-3-5x^2+x=0\)
\(\Rightarrow3\left(5x-1\right)-x\left(5x-1\right)=0\)
\(\Rightarrow\left(3-x\right)\left(5x-1\right)=0\)
\(\Rightarrow x=3\left(x\ge\frac{2}{3}\right)\)
\(3x-!2x+1!=2\Leftrightarrow3x-2=!2x+1!\) (1)
Hiểu nhiên VP>=0 vậy VT cũng phải >=0
Vậy: \(3x-2\ge0\Rightarrow x\ge\frac{2}{3}\) khi \(x\ge\rightarrow2x+1>0\Rightarrow!2x+1!=2x+1\) (*)
Từ lập luận (*) (1)\(\Leftrightarrow3x-2=2x+1\Leftrightarrow\left(3x-2x\right)=1+2\Rightarrow x=3\) thủa mãn (*) vậy x=3 là nghiệm duy nhất
\(\left(x+2\right)\left(x+\frac{2}{3}\right)>0\)
(+) \(\begin{cases}x+2>0\\x+\frac{2}{3}>0\end{cases}\)\(\Rightarrow\begin{cases}x>-2\\x>-\frac{2}{3}\end{cases}\)\(\Rightarrow x>-\frac{2}{3}\)
(+) \(\begin{cases}x+2< 0\\x+\frac{2}{3}< 0\end{cases}\)\(\Rightarrow\begin{cases}x< -2\\x< -\frac{2}{3}\end{cases}\)\(\Rightarrow x< -2\)
Vậy \(x>-\frac{2}{3}\) ; \(x< -2\)
\(\left(-2\frac{3}{4}+\frac{1}{2}\right)^2\)
\(=\left(-\frac{11}{4}+\frac{1}{2}\right)^2\)
\(=\left(-\frac{11}{4}+\frac{2}{4}\right)^2\)
\(=\left(-\frac{9}{4}\right)^2\)
\(=\frac{81}{16}\)
\(\left(-2\frac{3}{4}+\frac{1}{2}\right)^2\)
\(=\left(\frac{-11}{4}+\frac{1}{2}\right)^2\)
\(=\left(\frac{-11}{4}+\frac{2}{4}\right)^2\)
\(=\left(\frac{-9}{4}\right)^2\)
\(=\frac{81}{16}\)
\(B=\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=\frac{x^2+3}{x^2+3}+\frac{12}{x^2+3}=1+\frac{12}{x^2+3}\)
Để B lớn nhất thì \(\frac{12}{x^2+3}\) lớn nhất hay x2 + 3 nhỏ nhất
Có: x2 + 3 \(\ge3\)
Dấu "=" xảy ra khi và chỉ khi x2 = 0 => x = 0
Khi x = 0, \(B=\frac{0^2+15}{0^2+3}=\frac{0+15}{0+3}=\frac{15}{3}=5\)
Vậy \(B_{Max}=5\) khi và chỉ khi x = 0
a ) \(3,2.x+\left(-1,2\right).x+2,7=-4,9\)
\(3,2.x+\left(-1,2\right).x=-4,9-2,7\)
\(3,2.x+\left(-1,2\right).x=-2,2\)
\(x.\left[3,2+\left(-1,2\right)\right]=-2,2\)
\(x.2=-2,2\)
\(x=-2,2:2\)
\(x=-1,1\)
b ) \(\left(-5,6\right).x+2,9.x-3,86=-9,8\)
\(\left(-5,6\right).x+2,9.x=-9,8+3,86\)
\(\left(-5,6\right).x+2,9.x=-5,94\)
\(x.\left[\left(-5,6\right)+2,9\right]=-5,94\)
\(x.-2,7=-5,94\)
\(x=2,2\)
a) 3,2 . x + (-1,2) . 2,7 =-4,9
=>x.[3,2+(-1,2)]=-4.9
=>x.2=-4,9
=>x=4,9:2
=>x=2,45