Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(-2\frac{3}{4}+\frac{1}{2}\right)^2\)
\(=\left(-\frac{11}{4}+\frac{1}{2}\right)^2\)
\(=\left(-\frac{11}{4}+\frac{2}{4}\right)^2\)
\(=\left(-\frac{9}{4}\right)^2\)
\(=\frac{81}{16}\)
\(\left(-2\frac{3}{4}+\frac{1}{2}\right)^2\)
\(=\left(\frac{-11}{4}+\frac{1}{2}\right)^2\)
\(=\left(\frac{-11}{4}+\frac{2}{4}\right)^2\)
\(=\left(\frac{-9}{4}\right)^2\)
\(=\frac{81}{16}\)
Câu5.Ta có hình vẽ
Chứng minh: a)Gọi E là trung điểm CD trong tam giác BCD có ME là đường trung bình => ME//BD
Trong tam giác MAE có I là trung điểm của cạnh AM (gt) mà ID//ME(gt) Nên D là trung điểm của AE => AD=DE (1)
Vì E là trung điểm của DC => DE=EC (2)
So sánh (1)và (2) => AD=DE=EC=> AC= 3AD
b)Trong tam giác MAE ,ID là đường trung bình (theo a) => ID=1/2ME (1)
Trong tam giác BCD; ME là Đường trung bình => ME=1/2BD (2)
So sánh (1) và (2) => ID =1/4 BD
Help me , please !Nguyễn Huy Thắng Trần Hương Thoan Trần Việt Linh Trương Hồng Hạnh Phạm Nguyễn Tất Đạt soyeon_Tiểubàng giải Yuuki Asuna Nguyễn Quốc Việt Nguyễn Thị Thu An Nguyễn Huy Tú Silver bullet Hoàng Lê Bảo Ngọc Phương An Võ Đông Anh Tuấn Lê Nguyên Hạo
4.
\(\left(0,36\right)^8=\left(\left(0,6\right)^2\right)^8=\left(0,6\right)^{16}\)
\(\left(0,216\right)^4=\left(\left(0,6\right)^3\right)^4=\left(0,6\right)^{12}\)
5.
a, \(\left(3\times5\right)^3=15^3=1125\)
b, \(\left(\frac{-4}{11}\right)^2=\frac{16}{121}\)
c, \(\left(0,5\right)^4\times6^4=\left(0,5\times6\right)^4=3^4=81\)
d, \(\left(\frac{-1}{3}\right)^5\div\left(\frac{1}{6}\right)^5=\left(\frac{-1}{3}\right)^5\times6^5=\left(\frac{-1}{3}\times6\right)^5=\left(-2\right)^5=-32\)
6.
a, \(\frac{6^2\times6^3}{3^5}=\frac{6^5}{3^5}=\frac{2^5\times3^5}{3^5}=2^5=32\)
b, \(\frac{25^2\times4^2}{5^5\times\left(-2\right)^5}=\frac{100^2}{\left(-10\right)^5}=\frac{10^4}{\left(-10\right)^5}=\frac{-1}{10}\)
c, Mình không nhìn rõ đề
d, \(\left(-2\frac{3}{4}+\frac{1}{2}\right)^2=\left(\frac{-11}{4}+\frac{1}{2}\right)^2=\left(\frac{-9}{4}\right)^2=\frac{81}{16}\)
7.
a, \(\left(\frac{1}{3}\right)^m=\frac{1}{81}\Rightarrow\left(\frac{1}{3}\right)^m=\left(\frac{1}{3}\right)^4\Rightarrow m=4\)
b, \(\left(\frac{3}{5}\right)^n=\left(\frac{9}{25}\right)^5\Rightarrow\left(\frac{3}{5}\right)^n=\left(\left(\frac{3}{5}\right)^2\right)^5\Rightarrow\left(\frac{3}{5}\right)^n=\left(\frac{3}{5}\right)^{10}\Rightarrow n=10\)
c, \(\left(-0,25\right)^p=\frac{1}{256}\Rightarrow\left(-0,25\right)^p=\left(\frac{1}{4}\right)^4\Rightarrow\left(-0,25\right)^p=\left(0,25\right)^4\Rightarrow p=4\)
8.
a, \(\left(\frac{2}{5}+\frac{3}{4}\right)^2=\left(\frac{23}{20}\right)^2=\frac{529}{400}\)
b, \(\left(\frac{5}{4}-\frac{1}{6}\right)^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
C = 1 + 3 + 5 +...+ 997 + 999
C = 999 + 997 + 995 +...+ 1
C = (1 + 999) + (3 + 997) + (5 + 995) +...+ (999 + 1) ( 250 cặp số )
C = 1000 + 1000 + 1000 +...+ 1000 ( 250 số 1000 )
C = 1000.250
C = 250000
Vậy C = 250000
\(C=1+3+5+....+997+999\\ C=\left(1+999\right)+\left(3+997\right)+.....+\left(499+501\right)\)
\(C=1000+1000+1000+......\left(c\text{ó}250s\text{ố}\right)\)
\(C=1000.250\\ C=250000\)
gọi số hs trung bình la a, hs giỏi là b, hs khá là c
theo bài ra ta có: a = 2c => \(\frac{a}{2}=\frac{c}{1}\) => \(\frac{a}{4}=\frac{c}{2}\) ( 1)
b = \(\frac{c}{2}\) (2)
từ 1 và 2 => \(\frac{a}{4}=\frac{c}{2}=\frac{b}{1}\) và a+b+c = 42
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{4}=\frac{c}{2}=\frac{b}{1}=\frac{a+c+b}{4+2+1}=\frac{42}{7}=6\)
=> a= 24
b = 6
c = 12
vậy có 24 hs trung bình, 6 hs giỏi và 12 hs khá
Gọi số học sinh \(\text{giỏi; khá; trung bình}\) của lớp đó lần lượt là \(a;b;c\) \(\left(a;b;c\in N\text{*}\right)\) \(\left(\text{học sinh}\right)\)
Theo bài ra ta có : \(a+b+c=42\)
\(2b=c\Rightarrow b=\dfrac{c}{2}\) \(\left(1\right)\)
\(a=\dfrac{1}{2}b\Rightarrow a=\dfrac{b}{2}\Rightarrow2a=b\Rightarrow\dfrac{a}{\dfrac{1}{2}}=b\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra : \(\dfrac{a}{\dfrac{1}{2}}=b=\dfrac{c}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{a}{\dfrac{1}{2}}=b=\dfrac{c}{2}=\dfrac{a+b+c}{\dfrac{1}{2}+1+2}=\dfrac{42}{\dfrac{7}{2}}=12\)
\(\dfrac{a}{\dfrac{1}{2}}=12\Rightarrow a=6\\ \)
\(b=12\\ \)
\(\dfrac{c}{2}=12\Rightarrow c=24\)
\(\text{Vậy }a=6\\ b=12\\ c=24\)
cho bốn chữ số 2,3,4,1 a, viết tất cả các số khác nhau.b, tính tổng các số vừa viết một cách nhanh nhất
\(3x-\left|2x+1\right|=2\)
\(\Rightarrow\left|2x+1\right|=3x-2\)
Thấy: \(VT\ge0\Rightarrow VP\ge0\Rightarrow3x-2\ge0\Rightarrow x\ge\frac{2}{3}\)
\(\left(\left|2x+1\right|\right)^2=\left(3x-2\right)^2\)
\(\Rightarrow4x^2+4x+1=9x^2-12x+4\)
\(\Rightarrow-5x^2+16x-3=0\)
\(\Rightarrow15x-3-5x^2+x=0\)
\(\Rightarrow3\left(5x-1\right)-x\left(5x-1\right)=0\)
\(\Rightarrow\left(3-x\right)\left(5x-1\right)=0\)
\(\Rightarrow x=3\left(x\ge\frac{2}{3}\right)\)
\(3x-!2x+1!=2\Leftrightarrow3x-2=!2x+1!\) (1)
Hiểu nhiên VP>=0 vậy VT cũng phải >=0
Vậy: \(3x-2\ge0\Rightarrow x\ge\frac{2}{3}\) khi \(x\ge\rightarrow2x+1>0\Rightarrow!2x+1!=2x+1\) (*)
Từ lập luận (*) (1)\(\Leftrightarrow3x-2=2x+1\Leftrightarrow\left(3x-2x\right)=1+2\Rightarrow x=3\) thủa mãn (*) vậy x=3 là nghiệm duy nhất