Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+2017}{2016}+\dfrac{x+2017}{2015}=\dfrac{x+2017}{2014}+\dfrac{x+2017}{2013}\)
<=>\(\dfrac{x+2017}{2016}+\dfrac{x+2017}{2015}-\dfrac{x+2017}{2014}-\dfrac{x+2017}{2013}=0\)
<=>(x+2017)(1/2016+1/2015-1/2014-1/2013)=0
vì 1/2016+1/2015-1/2014-1/2013 khác 0
nên x+2017=0<=>x=-2017
vậy................
chúc bạn học tốt ^^
a/ \(\left(4x-5\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-5=0\\3x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Vậy ............
b/ \(\dfrac{x+1}{2016}+\dfrac{x+2}{2015}=\dfrac{x+3}{2014}+\dfrac{x+4}{2013}\)
\(\Leftrightarrow\left(\dfrac{x+1}{2016}+1\right)+\left(\dfrac{x+2}{2015}+1\right)=\left(\dfrac{x+3}{2014}+1\right)+\left(\dfrac{x+4}{2013}+1\right)\)
\(\Leftrightarrow\dfrac{x+2017}{2016}+\dfrac{x+2017}{2015}=\dfrac{x+2017}{2014}+\dfrac{x+2017}{2013}\)
\(\Leftrightarrow\dfrac{x+2017}{2016}+\dfrac{x+2017}{2015}-\dfrac{x+2017}{2014}-\dfrac{x+2017}{2013}=0\)
\(\Leftrightarrow x+2017\left(\dfrac{1}{2016}+\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2013}\right)=0\)
Mà \(\dfrac{1}{2016}+\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2013}\ne0\)
\(\Leftrightarrow x+2017=0\)
\(\Leftrightarrow x=-2017\)
Vậy ..
\(\left(4x-5\right)\left(3x+2\right)=0\)
\(\)\(\Rightarrow\left[{}\begin{matrix}4x-5=0\\3x+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
\(\dfrac{x+1}{2016}+\dfrac{x+2}{2015}=\dfrac{x+3}{2014}+\dfrac{x+4}{2013}\)
\(\Rightarrow\dfrac{x+1}{2016}+1+\dfrac{x+2}{2015}+1=\dfrac{x+3}{2014}+1+\dfrac{x+4}{2013}+1\)
\(\Rightarrow\dfrac{x+2017}{2016}+\dfrac{x+2017}{2015}=\dfrac{x+2017}{2014}+\dfrac{x+2017}{2013}\)
\(\Rightarrow\dfrac{x+2017}{2016}+\dfrac{x+2017}{2015}-\dfrac{x+2017}{2014}-\dfrac{x+2017}{2013}=0\)
\(\Rightarrow\left(x+2017\right)\left(\dfrac{1}{2016}+\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2013}\right)=0\)
Vì \(\dfrac{1}{2016}+\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2013}\ne0\)
Nên:
\(x+2017=0\Rightarrow x=-2017\)
\(\dfrac{x+4}{2012}+\dfrac{x+3}{2013}=\dfrac{x+2}{2014}+\dfrac{x+1}{2015}\)
\(\Leftrightarrow\dfrac{x+4}{2012}+1+\dfrac{x+3}{2013}+1=\dfrac{x+2}{2014}+1+\dfrac{x+1}{2015}\)
\(\Leftrightarrow\dfrac{x+2016}{2012}+\dfrac{x+2016}{2013}=\dfrac{x+2016}{2014}+\dfrac{x+2016}{2015}\)
\(\Leftrightarrow\dfrac{x+2016}{2012}+\dfrac{x+2016}{2013}-\left(\dfrac{x+2016}{2014}+\dfrac{x+2016}{2015}\right)=0\)
\(\Leftrightarrow x+2016.\left(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}+\dfrac{1}{2015}\right)\)
Vì \(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}+\dfrac{1}{2015}\ne0\)
\(\Rightarrow x+2016=0\)
\(\Rightarrow x=-2016\)
Vậy \(x=-2016\) tại biểu thức \(\dfrac{x+4}{2012}+\dfrac{x+3}{2013}=\dfrac{x+2}{2014}+\dfrac{x+1}{2015}\)
Theo đề ta có: x+4/2012+x+3/2013=x+2/2014+x+1/2015
=>x+4/2012+x+3/2013-x+2/2014+x+1/2015=0
=>( x+4/2012+1)+(x+3/2013+1)-(x+2/2014+1)+(x+1/2015+1)
=>x+2016/2012+x+2016/2013-x+2016/2014-x+2016/2015=0
=>x+2016.(1/2012+1/2013-1/2014-1/2015)=0
Do 1/2012+1/2013-1/2014-1/2015>0
nên x+2016=0
=>x=-2016
Vậy x=-2016
\(=>\left(\dfrac{x+4}{2014}+1\right)+\left(\dfrac{x+3}{2015}+1\right)=\left(\dfrac{x+2}{2016}+1\right)+\left(\dfrac{x+1}{2017}+1\right)\)
=> \(\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}=\dfrac{x+2018}{2016}+\dfrac{x+2018}{2017}\)
=> (x+2018).\(\left(\dfrac{1}{2014}+\dfrac{1}{2015}\right)=\left(x+2018\right).\left(\dfrac{1}{2016}+\dfrac{1}{2017}\right)\)
=> (x+2018).\(\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)\) = 0
Mà \(\dfrac{1}{2014}>0;\dfrac{1}{2015}>0;\dfrac{1}{2016}>0;\dfrac{1}{2017}>0\)
=>\(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\ne0\)
=> \(x+2018=0\)
=>x = 0-2018
=> x = 0+(-2018)
=> x = -2018
\(\dfrac{x-1}{2017}+\dfrac{x-2}{2016}=\dfrac{x-3}{2015}+\dfrac{x-4}{2014}\)
\(\Rightarrow\dfrac{x-1}{2017}+\dfrac{x-2}{2016}-\dfrac{x-3}{2015}-\dfrac{x-4}{2014}=0\)
\(\Rightarrow\dfrac{x-1}{2017}-1+\dfrac{x-2}{2016}-1-\dfrac{x-3}{2015}+1-\dfrac{x-4}{2014}+1=0\)
\(\Rightarrow\left(\dfrac{x-1}{2017}-1\right)+\left(\dfrac{x-2}{2016}-1\right)-\left(\dfrac{x-3}{2015}-1\right)-\left(\dfrac{x-4}{2014}-1\right)=0\)
\(\Rightarrow\dfrac{x-2018}{2017}+\dfrac{x-2018}{2016}-\dfrac{x-2018}{2015}-\dfrac{x-2018}{2014}=0\)
\(\Rightarrow x-2018.\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)
Vì \(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\ne0\)
Để \(x-2018.\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)
\(\Rightarrow x-2018=0\)
\(x=2018\)
Ta có :
\(\dfrac{x-1}{2017}+\dfrac{x-2}{2016}=\dfrac{x-3}{2015}+\dfrac{x-4}{2014}\)
\(\Leftrightarrow\)\(\left(\dfrac{x-1}{2017}-1\right)+\left(\dfrac{x-2}{2016}-1\right)=\left(\dfrac{x-3}{2015}-1\right)+\left(\dfrac{x-4}{2014}-1\right)\) ( trừ 2 vế cho 2 )
\(\Leftrightarrow\)\(\dfrac{x-2018}{2017}+\dfrac{x-2018}{2016}=\dfrac{x-2018}{2015}+\dfrac{x-2018}{2014}\)
\(\Leftrightarrow\)\(\dfrac{x-2018}{2017}+\dfrac{x-2018}{2016}-\dfrac{x-2018}{2015}-\dfrac{x-2018}{2014}=0\)
\(\Leftrightarrow\)\(\left(x-2018\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)
Vì \(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\ne0\)
Nên \(x-2018=0\)
\(\Rightarrow\)\(x=2018\)
Vậy \(x=2018\)
Chúc bạn học tốt ~
Ta có : \(\dfrac{x-3}{2015}+\dfrac{x-4}{2014}+\dfrac{x-5}{2013}+\dfrac{x-6}{2012}=4\)
\(\dfrac{x-3}{2015}+\dfrac{x-4}{2014}+\dfrac{x-5}{2013}+\dfrac{x-6}{2012}-4=0\)
\(\dfrac{x-3}{2015}-1+\dfrac{x-4}{2014}-1+\dfrac{x-5}{2013}-1+\dfrac{x-6}{2012}-1=0\)
\(\dfrac{x-2018}{2015}+\dfrac{x-2018}{2014}+\dfrac{x-2018}{2013}+\dfrac{x-2018}{2012}=0\)
\(\left(x-2018\right).\left(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}+\dfrac{1}{2012}\right)=0\)
Vì \(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}+\dfrac{1}{2012}>0\)
=> x - 2018 = 0
x = 0 + 2018
x = 2018
Vậy x = 2018
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}+\dfrac{x+3}{2013}=-3\)
\(\left(\dfrac{x+1}{2015}+1\right)+\left(\dfrac{x+2}{2014}+1\right)+\left(\dfrac{x+3}{2013}+1\right)=0\)
\(\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}+\dfrac{x+2016}{2013}=0\)
\(\left(x+2016\right)\left(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}\right)=0\)
\(\Rightarrow x+2016=0\Rightarrow x=-2016\)
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}+\dfrac{x+3}{2013}=-3\)
\(\Rightarrow\dfrac{x+1}{2015}+1+\dfrac{x+2}{2014}+1+\dfrac{x+3}{2013}+1=0\)
\(\Rightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}+\dfrac{x+2016}{2013}=0\)
\(\Rightarrow\left(x+2016\right).\left(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}\right)=0\)
\(\Rightarrow x+2016=0\Rightarrow x=-2016\)
Chúc bạn học tốt!!!
. Đây nha