Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+1)2-(x+1)=0
<=> (x+1)2 hoặc x+1=0
(x+1)2=0 => x=-1
x+1=0 => x=-1
Vậy x=-1
b) 5x2-13x=0
x(5x-13)=0
<=> x=0 hoặc 5x-13=0
5x-13=0 => 5x=13 => x=13/5
Vậy x=13/5
c) x2-7x3=0
<=> x(x-7x2)=0
=> x=0 hoặc
x+4x2+4x3=0
x+2x2+2x2+4x3=0
x(1+2x)+2x2(1+2x)=0
(1+2x)(x+2x2)=0
x(1+2x)(1+2x)=0
\(\Rightarrow\hept{\begin{cases}x=0\\1+2x=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}}\)
\(x^3+9x^2+27x+26=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+7x+13\right)=0\Rightarrow x=-2\)
\(x^3+9x^2+27x+26=0\)
\(\Leftrightarrow x^3+9x^2+27x+27=1\)
\(\Leftrightarrow\left(x+3\right)^3=1^3\)
\(\Leftrightarrow x+3=1\Leftrightarrow x=-2\)
\(\left(2x-3\right)^2-4x=3\)
<=> \(4x^2-12x+9-4x=3\)
<=> \(4x^2-16x+6=0\)
<=> \(\left(2x\right)^2-2.2x.4+16-10=0\)
<=> \(\left(2x-4\right)^2=10\)
<=> \(2x-4=\sqrt{10}\)hoặc \(2x-4=-\sqrt{10}\)
<=> \(x=\frac{\sqrt{10}+4}{2}\)hoặc \(x=\frac{-\sqrt{10}+4}{2}\)
\(\left(x-2\right)\left(x+2\right)-\left(3+x\right)^2=0\)
<=> \(x^2-4-\left(9+6x+x^2\right)=0\)
<=> \(x^2-4-9-6x-x^2=0\)
<=> \(-6x-13=0\)
<=> \(-6x=13\)
<=> \(x=\frac{-13}{6}\)
B1 Xét (7x+1)\(^2\)-(x+7)\(^2\)-48(x\(^2\)-1)
=49\(x^2\)+14x+1-x\(^2\)-14x-49-48x\(^2\)+48
=0
Vậy \(\left(7x+1\right)^2-\left(x+7\right)^2=48\left(x^2-1\right)\)
B2 \(16x^2-\left(4x-5\right)^2=15\)
(4x)\(^2\)-(4x-5)\(^2\)-15=0
(4x-4x+5)(4x+4x-5)-15=09x-5)=0
5(8x-5)-15=0
40x-25-15=0
40x-40=0
x =1
câu B3 mình không bik làm
chúc bạn học tốt ~~~
a.
\(f\left(x\right)=x^3-x^2+3x-3=x^2\left(x-1\right)+3\left(x-1\right)=\left(x^2+3\right)\left(x-1\right)\)
f(x) > 0
<=> x2 + 3 và x - 1 cùng dấu
- \(\Leftrightarrow\hept{\begin{cases}x^2+3>0\\x-1>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>0\\x>1\end{cases}}\Leftrightarrow x>1\)
- \(\Leftrightarrow\hept{\begin{cases}x^2+3< 0\\x-1< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2< -3\\x< 1\end{cases}\Rightarrow}\) loại
Vậy x > 1
b.
\(g\left(x\right)=x^3+x^2+9x+9=x^2\left(x+1\right)+9\left(x+1\right)=\left(x^2+9\right)\left(x+1\right)\)
g(x) < 0
<=> x2 + 9 và x + 1 khác dấu
- \(\Leftrightarrow\hept{\begin{cases}x^2+9< 0\\x+1>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2< -9\\x>1\end{cases}\Rightarrow}\) loại
- \(\Leftrightarrow\hept{\begin{cases}x^2+9>0\\x+1< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2>-9\\x< -1\end{cases}}\Rightarrow\)loại
Vậy không tìm được x thỏa mãn yêu cầu đề.