K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2016

Tổng các hệ số của một đa thức P(x) bất kì bằng giá trị của đa thức đó tại x=1. Vậy tổng các hệ số của đa thức:

P(x)=(3 - 4x + x^2)^2006 . (3 + 4x + x^2)^2007

Bằng P(1)=(3-4+1)^2006 . (3+4+1)^2007=0

Vậy kết quả bằng 0 đó bạn.

8 tháng 3 2016

Tổng cần tìm là: (3-4+1)^2016.(3+4+1)^2007=0

16 tháng 2 2016

a) Ta có:

\(M\left(x\right)=A\left(x\right)-2.B\left(x\right)+C\left(x\right)\)

\(=\left(2x^5-4x^3+x^2-2x+2\right)-2.\left(x^5-2x^4+x^2-5x+3\right)+\left(x^4+3x^3+3x^2-8x+4\frac{3}{16}\right)\)

\(=2x^5-4x^3+x^2-2x+2-2x^5+4x^4-2x^2+10x-6+x^4+4x^3+3x^2-8x+\frac{67}{16}\)

\(=\left(2x^5-2x^5\right)+\left(4x^4+x^4\right)+\left(-4x^3+4x^3\right)+\left(x^2-2x^2+3x^2\right)+\left(-2x+10x-8x\right)+\left(2-6+\frac{67}{16}\right)\)

\(=0+5x^4+0+2x^2+0+\frac{3}{16}\)

\(=5x^4+2x^2+\frac{3}{16}\)

b) Thay  \(x=-\sqrt{0,25}=-0,5\); ta có:

\(M\left(-0,5\right)=5.\left(-0,5\right)^4+2.\left(-0,5\right)^2+\frac{3}{16}\)

\(=5.0,0625+2.0,25+\frac{3}{16}\)

\(=\frac{5}{16}+\frac{8}{16}+\frac{3}{16}=\frac{16}{16}=1\)

c) Ta có:

\(x^4\ge0\) với mọi x

\(x^2\ge0\) với mọi x

\(\Rightarrow5x^4+2x^2+\frac{3}{16}>0\) với mọi x

Do đó không có x để M(x)=0

24 tháng 4 2016

Q=20-/3-x/ lớn nhất khi /3-x/ nhỏ nhất 

nên /3-x/=0(vì /3-x/ luôn >=0 dấu)

     3-x=0

        x=3

24 tháng 4 2016

D=4/\x-2\+2 lớn nhất khi và chỉ khi \x-2\+2 nhỏ nhất,khác 0 và lớn hơn=2(vì \x-2\ luôn EN)

nên \x-2\+2=2

       \x-2\=0

       x-2=0

      x=2

        

 

31 tháng 1 2016

\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

=> \(\frac{1}{x+2000}-\frac{1}{x+2001}+\frac{1}{x+2001}-\frac{1}{x+2002}+....+\frac{1}{x+2006}-\frac{1}{x+2007}=\frac{7}{8}\)

<=> \(\frac{1}{x+2000}-\frac{1}{x+2007}=\frac{7}{8}\)

<=> \(\frac{7}{\left(x+2000\right)\left(x+2007\right)}=\frac{7}{8}\Leftrightarrow\left(x+2000\right)\left(x+2007\right)=8\)

=> x = -1999 hoặc x = - 2008

 

13 tháng 6 2019

\(P=xy\left(x-2\right)\left(y+6\right)+13x^2+4y^2-26x+24y+46.\)

\(=\left(x^2-2x\right)\left(y^2+6y\right)+13\left(x^2-2x\right)+4\left(y^2+6y\right)+46\)

\(=\left[\left(x^2-2x\right)\left(y^2+6y\right)+4\left(y^2+6y\right)\right]+13\left(x^2-2x+4\right)-6\)

\(=\left(x^2-2x+4\right)\left(y^2+6y\right)+13\left(x^2-2x+4\right)-6\)

\(=\left(x^2-2x+4\right)\left(y^2+6y+13\right)-6\)

\(=\left[\left(x-1\right)^2+3\right]\left[\left(y+3\right)^2+4\right]-6\)

Ta có \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+3\ge3\)

\(\left(y+3\right)^2\ge0\forall y\Rightarrow\left(y+3\right)^2+4\ge4\)

Suy ra \(P=\left[\left(x-1\right)^2+3\right]\left[\left(y+3\right)^2+4\right]-6\ge3.4-6=6\)

Vậy giá trị nhỏ nhất của P=6 \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-3\end{cases}.}\)

Câu này tương tự với câu có link bên dưới phải không ạ?

https://olm.vn/hoi-dap/detail/223114327893.html

25 tháng 4 2020

Ta có:

\(P=xy\left(x-2\right)\left(y+6\right)+13x^2+4y^2-26x+24y+46\)

\(=\left[x\left(x-2\right)\right]\left[y\left(y+6\right)\right]+\left(13x^2-26x\right)+\left(4y^2+24y\right)+46\)

\(=\left(x^2-2x\right)\left(y^2+6y\right)+13\left(x^2-2x\right)+4\left(y^2+6y\right)+46\)

\(=\left[\left(x-1\right)^2-1\right]\left[\left(y+3\right)^2-9\right]+13\left[\left(x-1\right)^2-1\right]\)

\(+4\left[\left(y+3\right)^2-9\right]+46\)

Đặt \(x-1=u;y+3=v\)

Khi đó \(P=\left(u^2-1\right)\left(v^2-9\right)+13\left(u^2-1\right)+4\left(v^2-9\right)+46\)

\(=u^2v^2-v^2-9u^2+9+13u^2-13+4v^2-36+46\)

\(=u^2v^2+4u^2+3v^2+6\ge6\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}u=0\\v=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

12 tháng 6 2018

Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng
Nếu f(a) = 0 => a là nghiệm của f(x).
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x.
+ Thay x = 0 vào (1) ta được
0.f(0 + 1) = (0 + 2).f(0)
=> 0 = 2.f(0)
=> f(0) = 0
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2)

+ Thay x = -2 vào (1) ta được:
(-2).f(-2 + 1) = (-2 + 2).f(-2)
=> (-2).f(-1) = 0.f(-2)
=> (-2).f(-1) = 0
=> f(-1) = 0
=> x = -1 là 1 nghiệm của đa thức trên (3)
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2

Đề thi khảo sát đội tuyển Toán lớp tui nè! Triều giúp phần c bài 5 và cả bài 6 coi!Bài 1: Tìm GTNN của \(A=\left|2x-2\right|+\left|2x-2016\right|\)Bài 2: Cho \(\frac{a_1-1}{100}=\frac{a_2-2}{99}=...=\frac{a_{99}-99}{2}=\frac{a_{100}-100}{1}\)Biết \(a_1+a_2+...+a_{99}+a_{100}=10100\). Tìm \(a_1;a_2;...;a_{99};a_{100}\)Bài 3:Cho đa thức:\(M=2x^2+xy-4x-xy-y^2+2y+x+2016\)Biết \(x+y-2=0\). Tính M.Bài 4:Cho 2 đa thức, m là...
Đọc tiếp

Đề thi khảo sát đội tuyển Toán lớp tui nè! Triều giúp phần c bài 5 và cả bài 6 coi!

Bài 1: 

Tìm GTNN của \(A=\left|2x-2\right|+\left|2x-2016\right|\)

Bài 2: 

Cho \(\frac{a_1-1}{100}=\frac{a_2-2}{99}=...=\frac{a_{99}-99}{2}=\frac{a_{100}-100}{1}\)

Biết \(a_1+a_2+...+a_{99}+a_{100}=10100\). Tìm \(a_1;a_2;...;a_{99};a_{100}\)

Bài 3:

Cho đa thức:

\(M=2x^2+xy-4x-xy-y^2+2y+x+2016\)

Biết \(x+y-2=0\). Tính M.

Bài 4:

Cho 2 đa thức, m là hằng

\(q\left(x\right)=x^2+mx+m^2\)

\(p\left(x\right)=x^2+2\left(m+x\right)\)

Biết \(q\left(1\right)=p\left(-1\right)\). Tìm m.

Bài 5:

Cho tam giác nhọn ABC, đường cao AH. Phía ngoài tam giác ABC, vẽ 2 tam giác ABE và ACF vuông cân tại B và C. Trên tia đối tia AH, lấy I sao cho AI=BC.

CMR:

a)  \(\Delta ECB=\Delta BIA\)

b) EC=BI; EC vuông góc với BI

c) BF,AH,CE đồng quy

Bài 6: 

Chứng minh rằng tổng bình phương 5 số tự nhiên liên tiếp không là số chính phương.

3
22 tháng 2 2016

Dễ óa

22 tháng 2 2016

A H B C F E I

12 tháng 11 2016

Toán lớp 7 mà vào đăng vào trang lớp 6 chi vậy ? Thanh Huyền

 

20 tháng 2 2016

x phải khác 0 nhỉ tại đâu có số nào là -0

20 tháng 2 2016

-_- 

28 tháng 2 2016

a/ f(x) = 0 => x2 + 4x - 5 = 0 => (x - 1)(x + 5) = 0 => x = 1 hoặc x = -5

      Vậy x = 1 , x = -5

b/ f(x) > 0 => x2 + 4x - 5 > 0 => (x - 1)(x + 5) > 0 => x - 1 > 0 và x + 5 > 0 => x > 1 và x > -5 => x > 1 

                                                                          hoặc x - 1 < 0 và x + 5 < 0 => x < 1 và x < -5 => x < -5

      Vậy x > 1 hoặc x < -5

c/ f(x) < 0 => x2 + 4x - 5 < 0 => (x - 1)(x + 5) < 0 => x - 1 > 0 và x + 5 < 0 => x > 1 và x < -5 => vô lí

                                                                          hoặc x - 1 < 0 và x + 5 > 0 => x < 1 và x > -5 => -5 < x < 1

      Vậy -5 < x < 1