Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử 3n+19=a2 (\(a\inℕ\)). dễ thấy a chẵn nên \(a^2\equiv0\)(mod 4)
=> 3n \(\equiv\)1 (mod 4)
Mặt khắc vì 3\(\equiv\)-1 nên \(3^n\equiv\left(-1\right)^n\)(mod 4)
Vậy n là số chẵn hay n=2m (\(m\inℕ\)) Ta có 32m+19=a2 nên \(\left(a-3^m\right)\left(a+3^m\right)=19\Rightarrow\hept{\begin{cases}a-3^m=1\\a+3^m=19\end{cases}\Rightarrow m=2\Rightarrow n=4}\)
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Giả sử \(m\ge n\).
Ta có: \(2^{2m}+2^{2n}=4^m+4^n=4^n\left(4^{m-n}+1\right)\).
Đặt \(4^{m-n}+1=l^2\Leftrightarrow4^{m-n}=\left(l-1\right)\left(l+1\right)\)
Dễ thấy với các trường hợp của \(m-n\)thì không có \(l\)thỏa mãn.
Vậy phương trình vô nghiệm.
\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)
\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)
Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)
Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890
Vậy n=890
Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)
Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)
\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)
\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)
\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)
\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)
\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)
Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8
Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 =>
=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3
Đặt n^2+1234=a^2 ( a thuộc N)
ta có:
\(n^2+1234=a^2\)
\(\Leftrightarrow a^2-n^2=1234\)
\(\Leftrightarrow\left(a+n\right)\left(a-n\right)=1234\)
Vì a thuộc N và n thuộc N nên ta có bảng:
Vậy không có số tự nhiên n nào thỏa mãn đề bài