Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: abc = 100.a + 10.b +c = n^2 - 1 (1)
cba = 100.c + 10.b + a = n^2- 4n + 4 (2)
Lấy (1) trừ (2) ta được:
99.(a – c) = 4n – 5
Suy ra 4n - 5 chia hết 99
Vì 100 ≤ abc ≤ 999 nên:
100 ≤ n^2 -1 ≤ 999 => 101 ≤ n^2≤ 1000 => 11 ≤ 31 => 39 ≤ 4n - 5 ≤ 119
Vì 4n - 5 chia hết 99 nên 4n - 5 = 99 => n = 26 => abc = 675
Ta có: abc = 100.a + 10.b +c = n2 - 1 (1)
cba = 100.c + 10.b + a = n2- 4n + 4 (2)
Lấy (1) trừ (2) ta được:
99.(a – c) = 4n – 5
Suy ra 4n - 5 chia hết 99
Vì 100 ≤ abc ≤ 999 nên:
100 ≤ n^2 -1 ≤ 999 => 101 ≤ n2 ≤ 1000 => 11 ≤ 31 => 39 ≤ 4n - 5 ≤ 119
Vì 4n - 5 chia hết 99 nên 4n - 5 = 99 => n = 26 => abc = 675
. Vậy có một số tự nhiên có ba chữ số thoả mãn yêu cầu đề bài là 675
Ta có: \(abc=100a+10b+c=n^2-1\left(1\right)\)
\(cba=100c+10b+a=n^2-4n+4\left(2\right)\)
Lấy (1) trừ (2) ta được: \(99\cdot\left(a-c\right)=4n-5\)
\(\Rightarrow4n-5⋮99\)
Vì \(100\le abc\le999\Rightarrow100\le n^2-1\le999\)
\(\Rightarrow101\le n^2\le1000\Rightarrow11\le n\le31\Rightarrow39\le4n-5\le119\)
Vì \(4n-5⋮99\Rightarrow4n-5=99\Rightarrow n=26\Rightarrow abc=675\)
ĐK :0≤b≤9;0<a,c≤9;100≤n2−1≤999⇒11≤n≤31;n∈N0≤b≤9;0<a,c≤9;100≤n2−1≤999⇒11≤n≤31;n∈N
Trừ từng vế pt (1) và (2) ta có
99(a−c)=4n−599(a−c)=4n−5 Vì (a−c)(a−c) là số tự nhiên nên 4n−54n−5 chia hết cho 99 mà 39≤4n−5≤11939≤4n−5≤119
___
⇒4n−5=99⇒n=26⇒abc=262−1=675⇒4n−5=99⇒n=26⇒abc=262−1=675 (nhận)
___
Thử lại: cba=576=242=(26−2)2cba=576=242=(26−2)2 ( đúng)
Ta có : abc = n2 -1 ;cba =(n-2)2 =n2-4n+4
Trừ từng vế ta được : 99a-99c=4n-5=>4n-5 chia hết cho 99 {do (4;99)=1}
Mặt khác : cab = (n-22 )mà 100 < \bar{cba} < 999
=>10<n-2<99<=>12<n<101
Mà 4n-5 chia hết cho 99
=>n=26
n=26 => abc = 675
Ta có: abc=100.a+10b+c=10^2-1(1)
cab=100.c+10.b+a=n^2-4n+4(2)
Lấy (1) trừ (2) ta dược:
99.(a-c)=an-5
Suy ra 4n-5 chia hết cho 99
Vì 100\(\le\)abc\(\le\)999 nên:
100\(\le\)n^2-1\(\le\)999\(\Rightarrow\)101\(\le\)n^2\(\le\)1000\(\Rightarrow\)11\(\le\)31\(\Rightarrow\)39\(\le\)4n-5\(\le\)119
Vì 4n-5 chia hết 99 nên 4n-5=99\(\Rightarrow\)n=26\(\Rightarrow\)abc=675
Câu hỏi của Trần Cây Kem Lạnh - Toán lớp 6 - Học toán với OnlineMath
\(\overline{abc}\)\(=100a+10b+c=n^2-1\)(1)
\(\overline{cba}\)\(=100c+10b+c=n^2-4n+4\)(2)
Từ (1) và (2)\(\Rightarrow99.\left(a-c\right)=4n-5⋮99\)(3)
Mặt khác:100[n2-1[999-101[n2[1000<=>11[n[31<=>39[4n-5[119 (4)
Từ (3) và (4)=>4n-5=99=>n=26
Vậy abc=675
Ta có: abc = 100.a + 10.b +c = n^2 ‐ 1 ﴾1﴿
cba = 100.c + 10.b + a = n^2‐ 4n + 4 ﴾2﴿
Lấy ﴾1﴿ trừ ﴾2﴿ ta được:
99.﴾a – c﴿ = 4n – 5
Suy ra 4n ‐ 5 chia hết 99
Vì 100 abc 999 nên:
100 ≤ n^2 ‐1 999 => 101 n^2 1000 => 11 31 => 39 4n ‐ 5 119
Vì 4n ‐ 5 chia hết 99 nên 4n ‐ 5 = 99 => n = 26 => abc = 675
Ta có: abc = 100.a + 10.b +c = n^2 ‐ 1 ﴾1﴿
cba = 100.c + 10.b + a = n^2‐ 4n + 4 ﴾2﴿
Lấy ﴾1﴿ trừ ﴾2﴿ ta được:
99.﴾a – c﴿ = 4n – 5
Suy ra 4n ‐ 5 chia hết 99
Vì 100 abc 999 nên:
100 ≤ n^2 ‐1 999 => 101 n^2 1000 => 11 31 => 39 4n ‐ 5 119
Vì 4n ‐ 5 chia hết 99 nên 4n ‐ 5 = 99 => n = 26 => abc = 675