K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

Làm thử theo cách cổ truyền vậy -.-

Ta có : \(n^2+n+1=\left(m^2+m-3\right)\left(m^2-m+5\right)\)

\(\Leftrightarrow n^2+n+1=m^4+m^2+8m-15\)

\(\Leftrightarrow n^2+n+16-m^4-m^2-8m=0\)

Coi pt trên là pt bậc 2 ẩn n

Ta có : \(\Delta=4m^4+4m^2+32m-63\)

Pt có nghiệm nguyên khi \(\Delta\)là 1 số chính phương

Ta có \(\Delta=4m^4+4m^2+32m-63=\left(2m^2+2\right)^2-4\left(m-4\right)^2-3< \left(2m^2+2\right)^2\)

Giả sử m > 2 thì\(\Delta=\left(2m^2+1\right)^2+32\left(m-2\right)>\left(2m^2+1\right)^2\forall m>2\)

Khi đó  \(\left(2m^2+1\right)^2< \Delta< \left(2m^2+2\right)^2\)

Như vậy \(\Delta\)không phải số chính phương (Vì giữa 2 số chính phương liên tiếp ko còn scp nào nữa)

Nên điều giả sử là sai .

Tức là\(m\le2\)

Mà \(m\inℕ^∗\)

\(\Rightarrow m\in\left\{1;2\right\}\)

*Với m = 1 thì pt ban đầu trở thành

\(n^2+n+1=\left(1+1-3\right)\left(1-1+5\right)\)

\(\Leftrightarrow n^2+n+1=-5\)

\(\Leftrightarrow\left(n+\frac{1}{2}\right)^2=-\frac{23}{4}\)

Pt vô nghiệm

*Với m = 2 thì pt ban đầu trở thành

\(n^2+n+1=\left(2^2+2-3\right)\left(2^2-2+5\right)\)

\(\Leftrightarrow n^2+n+1=21\)

\(\Leftrightarrow n^2+n-20=0\)

\(\Leftrightarrow\left(n-4\right)\left(n+5\right)=0\)

\(\Leftrightarrow n=4\left(Do\text{ }n\inℕ^∗\right)\)

Vậy pt ban đầu có nghiệm nguyên dương duy nhất (m;n) = (2;4)

Giúp : Cho \(\Delta\)ABC nhọn nội tiếp (O) , D là điểm trên cung BC không chứa A . Dựng hình bình hành ADCE . Gọi H , K là trực tâm của tam giác ABC ,  ACE ; P , Q là hình chiếu vuông góc của K trên các đường thẳng BC , AB và I là giao EK , AC

CMR: a,P ; I ; Q thẳng hàng

          b, đường thẳng PQ đi qua trung điểm HK 

12 tháng 6 2020

Bài cuối có Max nữa nhé, cần thì ib mình làm cho.

Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)

Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)

Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị

18 tháng 6 2020

3/ \(P=\Sigma\frac{\left(3-a-b\right)\left(a-b\right)^2}{3}+\frac{5}{2}abc\ge0\)

NV
20 tháng 3 2022

- Với \(m=\left\{-2;-1;0\right\}\Rightarrow n=0\)

- Với \(m< -2\Rightarrow m\left(m+1\right)\left(m+2\right)< 0\) (ktm)

- Với \(m>0\):

\(m\left(m+1\right)\left(m+2\right)=\left(m+1\right)\left(m^2+2m\right)\)

Gọi \(d=ƯC\left(m+1;m^2+2m\right)\)

\(\Rightarrow\left(m+1\right)\left(m+1\right)-\left(m^2+2m\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Mà \(\left(m+1\right)\left(m^2+2m\right)=n^2\Rightarrow\left\{{}\begin{matrix}m+1=a^2\\m^2+2m=b^2\end{matrix}\right.\)

Từ \(m^2+2m=b^2\Rightarrow\left(m+1\right)^2-b^2=1\)

\(\Rightarrow\left(m+1-b\right)\left(m+1+b\right)=1\)

Tới đây chắc dễ rồi

4 tháng 12 2016

\(n^2+2n-x^2-x=0.\)
\(\Delta'_n=1+x^2+x\ne k^2\left(k\in Z\right)\Rightarrow dpcm\)

22 tháng 4 2020

Ta có : 

\(x\left(x+1\right)=n\left(n+2\right)\)

\(\Leftrightarrow x^2+x=n^2+2n\)

\(\Leftrightarrow x^2+x+1=n^2+2n+1\)

\(\Leftrightarrow x^2+x+1=\left(n+1\right)^2\)

Vì n là số nguyên cho trước thì \(\left(n+1\right)^2\) là một số chính phương 

\(x>0\), Ta có : \(x^2+x+1>x^2\)

                             \(x^2+x+1< x^2+x+1+x=x^2+2x+1\)

                                                                                            \(=\left(x+1\right)^2\)

\(\Rightarrow x^2< x^2+x+1< \left(x+1\right)^2\)

Hay \(x^2< \left(n+1\right)^2< \left(x+1\right)^2\)

=> Vô lí do không thể có số chính phương nào tồn tại giữa hai số chính phương liên tiếp 

Vậy không thể tồn tại số nguyên dương x